О некоторых проблемах неустойчивости в полудинамических системах

  • Борис Сергеевич Калитин Белорусский государственный университет, пр. Независимости 4, 220030, г. Минск, Беларусь https://orcid.org/0000-0002-8490-8432

Аннотация

Рассматривается задача о неустойчивости замкнутого положительно инвариантного множества M полудинамической системы на произвольном метрическом пространстве X. Второй метод Ляпунова для таких задач разработан достаточно полно в случае, когда множество M компактно, а пространство X локально компактно. Получены достаточные условия неустойчивости в терминах функций Ляпунова в двух ситуациях: M обладает окрестностью положительно устойчивых по Лагранжу полутраекторий; пространство X асимптотически компактно в некоторой окрестности множества M.

Биография автора

Борис Сергеевич Калитин, Белорусский государственный университет, пр. Независимости 4, 220030, г. Минск, Беларусь

кандидат физико-математических наук, доцент; профессор кафедры аналитической экономики и эконометрики экономического факультета

Литература

  1. Lyapunov AM. Obshchaya zadacha ob ustoichivosti dvizheniya [General problem on stability of motion]. Moscow: Gosudarstvennoe izdatel’stvo tekhniko-teoreticheskoi literatury; 1950. 472 p. Russian.
  2. Chetaev NG. Ustoichivost’ dvizheniya [Stability of motion]. 2nd edition. Moscow: Gostekhizdat; 1955. 207 p. Russian.
  3. Krasovskii NN. Nekotorye zadachi teorii ustoichivosti dvizheniya [Some problems of the theory of stability of motion]. Moscow: Gosudarstvennoe izdatel’stvo fiziko-matematicheskoi literatury; 1959. 211 p. Russian.
  4. Kalitine BS, Kalitine PB. On the stability of almost periodic systems. Vestnik BGU. Seriya 1. Fizika. Matematika. Informatika. 2014;1:78–82.
  5. Andreev AS. [On the asymptotic stability and instability of non-autonomous systems]. Prikladnaya matematika i mekhanika. 1979;43(5):796–805. Russian.
  6. Kalitine BS. [Stability of non-autonomous dynamic systems]. In: Aktual’nye zadachi teorii dinamicheskikh sistem upravleniya [Actual problems of the theory of dynamic control systems]. Minsk: Nauka i tekhnika; 1989. p. 37–46. Russian.
  7. Kalitine BS. On solving the problems of stability by Lyapunov’s direct method. Izvestiya vysshikh uchebnykh zavedenii. Matematika. 2017;6:33–43. Russian.
  8. Zubov VI. Ustoichivost’ dvizheniya (metody Lyapunova i ikh primenenie) [Stability of motion (the methods of Lyapunov and their application)]. 2nd edition. Moscow: Vysshaya shkola; 1984. 232 p. Russian.
  9. Bhatia NP, Szegö GP. Stability theory of dynamical systems. Berlin: Springer-Verlag; 1970. XII, 225 p.
  10. Kellett CM. Classical converse theorems in Lyapunov’s second method. Discrete and Continuous Dynamical Systems – B. 2015;20(8):2333–2360. DOI: 10.3934/dcdsb.2015.20.2333.
  11. Kalitine BS. [B-stability and the Florio – Seibert problem]. Differentsial’nye uravneniya. 1999;35(4):453–463. Russian.
  12. Kalitine BS. [Instability of closed invariant sets of semi-dynamical systems. The method of semi-definite Lyapunov functions]. Matematicheskie zametki. 2009;85(3):382–394. Russian. DOI: 10.4213/mzm4115.
  13. Kalitine BS. Ustoichivost’ dinamicheskikh sistem (Kachestvennaya teoriya) [Stability of dynamical systems (Qualitative theory)]. Saarbrücken: LAP LAMBERT Academic Publishing; 2012. 258 p. Russian.
  14. Kalitine BS. Ustoichivost’ dinamicheskikh sistem (Metod znakopostoyannykh funktsii Lyapunova) [Stability of dynamical systems (Method of semi-definite Lyapunov functions)]. Saarbrücken: LAP LAMBERT Academic Publishing; 2013. 259 p. Russian.
  15. Saperstone SH. Semidynamical systems in infinite dimensional spaces. New York: Springer-Verlag; 1981. 474 p. (Applied mathematical sciences; volume 37). DOI: 10.1007/978-1-4612-5977-0.
  16. Sibirskii KS, Shube AS. Poludinamicheskie sistemy (Topologicheskaya teoriya) [Semi-dynamic systems (Topological theory)]. Kishinev: Shtiintsa; 1987. 272 p. Russian.
  17. Sibirskii KS. Vvedenie v topologicheskuyu dinamiku [Introduction to topological dynamics]. Kishinev: Redaktsionno-izdatel’skii otdel Akademii nauk Moldavskoi SSR; 1970. 144 p. Russian.
  18. Arredondo JH, Seibert P. On a characterization of asymptotic stability. Aportaciones Matemáticas. Serie: Comunicaciones. 2001;29:11–16.
  19. Ladyzhenskaya O. Attractors for semigroups and evolution equations. Cambridge: Cambridge University Press; 1991. 73 p.
Опубликован
2021-04-12
Ключевые слова: полудинамическая система, замкнутое множество, неустойчивость, функция Ляпунова
Как цитировать
Калитин, Б. С. (2021). О некоторых проблемах неустойчивости в полудинамических системах. Журнал Белорусского государственного университета. Математика. Информатика, 1, 39-45. https://doi.org/10.33581/2520-6508-2021-1-39-45
Раздел
Дифференциальные уравнения и оптимальное управление