О счетнокомпактифицируемости в смысле Морита

  • Глеб Олегович Кукрак Белорусский государственный университет, пр. Независимости 4, 220030, г. Минск, Беларусь
  • Владимир Леонидович Тимохович Белорусский государственный университет, пр. Независимости 4, 220030, г. Минск, Беларусь

Аннотация

Рассматривается расширение Y топологического пространства Х, которое канонически вкладывается в волмэновское расширение ωX, при этом в нем замкнуто любое счетно-компактное замкнутое в Х множество и имеет предельную точку любое лежащее в Х бесконечное множество. Такое расширение названо насыщением пространства Х. Находится необходимое и достаточное условие счетнокомпактности пространства Y. Тем самым решается проблема существования счетнокомпактификации в смысле Морита определенного типа.

Биографии авторов

Глеб Олегович Кукрак, Белорусский государственный университет, пр. Независимости 4, 220030, г. Минск, Беларусь

кандидат физико-математических наук; доцент кафедры геометрии, топологии и методики преподавания математики механико-математического факультета

Владимир Леонидович Тимохович, Белорусский государственный университет, пр. Независимости 4, 220030, г. Минск, Беларусь

кандидат физико-математических наук, доцент; доцент кафедры геометрии, топологии и методики преподавания математики механико-математического факультета

Литература

  1. Arkhangel’skii AV. [One class of spaces containing all metric and all locally compact spaces]. Matematicheskii sbornik. 1965;67(1):55–88. Russian.
  2. Morita K. Products of normal spaces with metric spaces. Mathematische Annalen. 1964;154(4):365–382.
  3. Nagata Jun-iti. A note on M-spaces and topologically complete spaces. Proceedings of the Japan Academy. 1969;45(7):541–543. DOI: 10.3792/pja/1195520664.
  4. Morita K. Countably-compactifiable spaces. Science Reports of the Tokyo Kyoiku Daigaku. Section A. 1973;12(313/328):7–15.
  5. Burke DK, van Douwen EK. On countably compact extensions of normal locally compact M-spaces. Set-Theoretic Topology. 1977:81–89. DOI: 10.1016/B978-0-12-584950-0.50012-2.
  6. Isiwata T. On closed countably-compactifications. General Topology and its Applications. 1974;4(2):143–167. DOI: 10.1016/0016-660X(74)90017-8.
  7. Goldovt IYu, Timokhovich VL. [Saturations of topological spaces and the Morita problem]. Doklady Akademii nauk BSSR. 1977;21(9):777–780. Russian.
  8. Levin MA, Timokhovich VL. [M-spaces and the strong countably-compactifiabillity]. Doklady Akademii nauk BSSR. 1979;23(3):213–216. Russian.
  9. Fleischman WM. A new extension of countable compactness. Fundamenta Mathematicae. 1970;67(1):1–9.
  10. van Douwen EK, Reed GM, Roscoe AW, Tree IJ. Star covering properties. Topology and its Applications. 1991;39(1):71–103. DOI: 10.1016/0166-8641(91)90077-Y.
  11. Arkhangel’skii AV. [Compactness]. In: Itogi nauki i tekhniki. Seriya: Sovremennye problemy matematiki. Fundamental’nye napravleniya. Tom 50 [Results of science and technology. Series: Modern problems of mathematics. Fundamental directions. Volume 50]. Moscow: VINITI; 1989. p. 5–128. Russian.
  12. Engelking R. General topology. Warszawa: Polish Scientific Publishers; 1977. 626 p. Russian edition: Engelking R. Obshchaya topologiya. Antonovskii MYa, Arkhangel’skii AV, translators. Moscow: Mir; 1986. 752 p.
  13. Kukrak GO, Timokhovich VL. [On the limit of the inverse spectrum of exponential spaces]. Vestnik BGU. Seriya 1. Fizika. Matematika. Informatika. 2001;1:51–55. Russian.
  14. Hansard JD. Function space topologies. Pacific Journal of Mathematics. 1970;35(2):381–388.
  15. Frolova DS. On the family of sequentially proper topologies on the space of maps. Trudy Instituta matematiki. 2013;21(1): 102–108. Russian.
Опубликован
2021-04-12
Ключевые слова: компактификация Волмэна, насыщение топологического пространства, счетнокомпактификация в смысле Морита
Как цитировать
Кукрак, Г. О., & Тимохович, В. Л. (2021). О счетнокомпактифицируемости в смысле Морита. Журнал Белорусского государственного университета. Математика. Информатика, 1, 46-53. https://doi.org/10.33581/2520-6508-2021-1-46-53