Решения задач с разрывными условиями для волнового уравнения
Аннотация
Рассмотрены различные подходы к решению смешанных задач с разрывными условиями для волнового уравнения, основанные на функциональных и классических методах. Показаны отличия в решениях, которые соответствуют разным методам (преобразование Лапласа и метод характеристик) и определениям. Результаты продемонстрированы на одной смешанной задаче из теории механического удара о продольных колебаниях полубесконечного упругого стержня с разрывными начальными и граничными условиями. Модельным примером служит задача о колебаниях стержня после продольного удара в торец (в частности, после выстрела пластилиновой пулей, прилипающей к концу стержня).
Литература
- Zhuravkov MA, Starovoitov EI. Matematicheskie modeli mekhaniki tverdykh tel [Mathematical models of solid mechanics]. Minsk: Belarusian State University; 2021. 535 p. (Klassicheskoe universitetskoe izdanie). Russian.
- Hadamard J. Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa [Cauchy’s problem for linear partial differential equations of hyperbolic type]. Shugaev FV, translator; Belotserkovskii OM, editor. Moscow: Nauka; 1978. 352 p. Russian.
- Babeshko VA, Ratner SV, Syromyatnikov PV. On mixed problems for thermoelectroelastic media with discontinuous boundary conditions. Doklady Physics. 2007;52(2):90–95. DOI: 10.1134/s102833580702005x.
- Glushko AV, Baeva SA. Upon an initial-boundary value hydrodynamic problem with discontinuous boundary conditions. Proceedings of Voronezh State University. Series: Physics. Mathematics. 2005;2:128–132. Russian.
- Trogdon T, Biondini G. Evolution partial differential equations with discontinuous data. Quarterly of Applied Mathematics. 2019;77(4):689–726. DOI: 10.1090/qam/1526.
- Kozlov VP, Mandrik PA, Yurchuk NI. Method for solving nonstationary heat problems with mixed discontinuous boundary conditions on the boundary of a half-space. Differential Equations. 2001;37(8):1171–1175. DOI: 10.1023/A:1012431821479.
- Kozlov VP, Mandrik PA. Solution of nonlinear two‐dimensional differential equations of transfer with discontinuity boundary conditions on the surface of an isotropic semiinfinite body in its heating through a circle of known radius. Journal of Engineering Physics and Thermophysics. 2001;74(2):471–476. DOI: 10.1023/A:1016685329003.
- Gaiduk SI, Dobrushkin VA. [Solution of a problem in the theory of thermoelasticity related to mechanical and thermal impacts]. Differentsial’nye uravneniya. 1979;15(9):1632–1645. Russian.
- Cerv J, Adamek V, Vales F, Gabriel D, Plesek J. Wave motion in a thick cylindrical rod undergoing longitudinal impact. Wave Motion. 2016;66:88–105. DOI: 10.1016/j.wavemoti.2016.05.007.
- Yurchuk NI, Kozlov VP, Mandrik PA. A method of paired integral equations in the region of laplace transforms for solving nonstationary heat conduction problems with mixed discontinuous boundary conditions. Journal of Engineering Physics and Thermophysics. 1999;72(3):534–549. DOI: 10.1007/BF02699221.
- Kozlov VP, Yurchuk NI, Mandrik PA. Method of paired integral equations in the region of L-transforms for solving two-dimensional problems of nonstationary heat conduction with mixed boundary conditions. Journal of Engineering Physics and Thermophysics. 1998;71(4):731–739. DOI: 10.1007/BF03449555.
- Korzyuk VI, Rudzko JV. The problem of a longitudinal impact on an elastic bar with an elastic attachment of one of its ends. In: Gusev OK, Vorobei RI, Gurevich VL, Knyazev MA, Kuleshov NV, Malyarevich AM, et al., editors. Instrumentation Engineering – 2022. Proceedings of the 15th International scientific and technical conference; 2022 November 16–18; Minsk, Belarus. Minsk: Belarusian National Technical University; 2022. p. 305–307. Russian.
- Bakhshinyan RM, Veinert YaV, Denisova IV. [On a method for solving the problem of nonstationary heat conduction of a ball with discontinuous boundary conditions]. In: Shul’ga OA, Akhmetova MN, Ivanova YuV, Laktionov KS, Komogortsev MG, Akhmetova VV, et al., editors. Tekhnicheskie nauki: teoriya i praktika. Materialy Mezhdunarodnoi zaochnoi nauchnoi konferentsii; aprel’ 2012 g.; Chita, Rossiya [Technical sciences: theory and practice. Proceedings of the International correspondence scientific conference; April 2012; Chita, Russia]. Chita: Molodoi uchenyi; 2012. p. 120–123. Russian.
- Gaiduk SI. Application of the contour integral method to the solution of a problem on transverse vibrations of a viscoelastic membrane caused by an impact. Differential Equations. 1991;27(8):977–985.
- Akhondizadeh M. Analytical solution of the longitudinal wave propagation due to the single impact. Journal of Low Frequency Noise, Vibration and Active Control. 2018;37(4):849–858. DOI: 10.1177/1461348418793122.
- Belyaev AK, Morozov NF, Tovstik PE, Tovstik TP. Beating in the problem of longitudinal impact on a thin rod. Mechanics of Solids. 2015;50(4):451–462. DOI: 10.3103/s0025654415040111.
- Belyaev AK, Morozov NF, Tovstik PE, Tovstik TP. Parametric resonances in the problem of longitudinal impact on a thin rod. Vestnik St. Petersburg University. Mathematics. 2016;49(1):53–67. DOI: 10.3103/s1063454116010040.
- Valeš F, Morávka Š, Brepta R, Červ J. Wave propagation in a thick cylindrical bar due to longitudinal impact. JSME International Journal. Series A, Solid Mechanics and Material Engineering. 1996;39(1):60–70. DOI: 10.1299/jsmea1993.39.1_60.
- Yurko V. Integral transforms connected with discontinuous boundary value problems. Integral Transforms and Special Functions. 2000;10(2):141–164. DOI: 10.1080/10652460008819282.
- Bateman H. Physical problems with discontinuous initial conditions. PNAS. 1930;16(3):205–211. DOI: 10.1073/pnas.16.3.205.
- Polyanin AD. Handbook of linear partial differential equations for engineers and scientists. New York: Chapman & Hall/CRC; 2001. 800 p. DOI: 10.1201/9781420035322.
- Pikulin VP, Pokhozhaev SI. Prakticheskii kurs po uravneniyam matematicheskoi fiziki [Equations in mathematical physics: a practical course]. 2nd edition. Moscow: Moscow Center for Continuous Mathematical Education; 2004. 208 p. Russian.
- Korzyuk VI, Rudzko JV. Classical solution of one problem of a perfectly inelastic impact on a long elastic semi-infinite bar with a linear elastic element at the end. Journal of the Belarusian State University. Mathematics and Informatics. 2022;2:34–46. Russian. DOI: 10.33581/2520-6508-2022-2-34-46.
- Rozhdestvenskii BL, Yanenko NN. Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike [Systems of quasilinear equations and their applications to gas dynamics]. 2nd edition. Moscow: Nauka; 1978. 688 p. Russian.
- Whitham GB. Linear and nonlinear waves. New York: John Wiley & Sons; 1999. XVI, 636 p. (Pure and applied mathematics; volume 1237). DOI: 10.1002/9781118032954.
- Kulikovskii AG, Sveshnikova EI, Chugainova AP. Matematicheskie metody izucheniya razryvnykh reshenii nelineinykh giperbolicheskikh sistem uravnenii [Mathematical methods for studying discontinuous solutions of nonlinear hyperbolic systems of equations]. Moscow: Steklov Mathematical Institute of Russian Academy of Sciences; 2010. 120 p. (Lektsionnye kursy NOTs; issue 16). Russian. DOI: 10.4213/lkn16.
- Ladyzhenskaya OA. [Sixth problem of the millennium: Navier – Stokes equations, existence and smoothness]. Uspekhi matematicheskikh nauk. 2003;58(2):45–78. Russian. DOI: 10.4213/rm610.
- Korzyuk VI, Kozlovskaya IS. Klassicheskie resheniya zadach dlya giperbolicheskikh uravnenii. Chast’ 2 [Classical solutions of problems for hyperbolic equations. Part 2]. Minsk: Belarusian State University; 2017. 48 p. Russian.
- Koshlyakov NS, Gliner EB, Smirnov MM. Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki [Partial differential equations of mathematical physics]. Moscow: Vysshaya shkola; 1970. 712 p. Russian.
- Nowacki WK. Zagadnienia falowe w teorii plastyczności. Warszawa: Państwowe Wydawnictwo Naukowe; 1974. 207 s. (Biblioteka mechaniki stosowanej). Russian edition: Nowacki WK. Volnovye zadachi teorii plastichnosti. Shachnev VA, translator; Shapiro GS, editor. Moscow: Mir; 1978. 307 p.
- Gorbach NI. Teoreticheskaya mekhanika. Dinamika [Theoretical mechanics. Dynamics]. 2nd edition. Minsk: Vyshjejshaja shkola; 2012. 320 p. Russian.
- Rabotnov YuN. Mekhanika deformiruemogo tverdogo tela [Mechanics of deformable solid]. Moscow: Nauka; 1979. 744 p. Russian.
- Korzyuk VI. Uravneniya matematicheskoi fiziki [Equations of mathematical physics]. 2nd edition. Moscow: URSS; 2021. 480 p. Russian.
- Yurchuk NI, Novikov EN. Necessary conditions for existence of classical solutions to the equation of semi-bounded string vibration. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2016;4:116–120. Russian.
- Lomovtsev FE, Lysenko VV. Non-characteristic mixed problem for a one-dimensional wave equation in the first quarter of the plane with non-stationary boundary second derivatives. Vesnik Vicebskaga dzjarzhawnaga wniversitjeta. 2019;3:5–17. Russian.
- Lysenko VV, Lomovtsev FE. [Solution and well-posedness criterion for a mixed problem for the general equation of vibrations of a semi-bounded string with non-characteristic and non-stationary second derivatives on the boundary]. In: Demenchuk AK, Krasovskii SG, Makarov EK, editors. Eruginskie chteniya – 2019. Materialy XIX Mezhdunarodnoi nauchnoi konferentsii po differentsial’nym uravneniyam; 14–17 maya 2019 g.; Mogilev, Belarus’. Chast’ 2 [Erugin readings – 2019. Proceedings of the 19th International scientific conference on differential equations; 2019 May 14–17; Mogilev, Belarus. Part 2]. Minsk: Institute of Mathematics of the National Academy of Sciences of Belarus; 2019. p. 30–32. Russian.
- Korzyuk VI, Kovnatskaya OA. Solutions of problems for the wave equation with conditions on the characteristics. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2021;57(2):148–155. Russian. DOI: 10.29235/1561-2430-2021-57-2-148-155.
- Korzyuk VI, Kovnatskaya OA. [The Goursat problem on the plane for a quasilinear hyperbolic equation]. In: Amel’kin VV, Antonevich AB, Astrovskii AI, Bashun SYu, Vas’kovskii MM, Gladkov AL, et al., editors. Eruginskie chteniya – 2022. Materialy XX Mezhdunarodnoi nauchnoi konferentsii po differentsial’nym uravneniyam; 31 maya – 3 iyunya 2022 g.; Novopolotsk, Belarus’. Chast’ 2 [Erugin readings – 2022. Proceedings of the 20th International scientific conference on differential equations; 2022 May 31 – June 3; Novopolotsk, Belarus. Part 2]. Novopolotsk: Polotsk State University; 2022. p. 16–17. Russian.
- Korzyuk VI, Stolyarchuk II. Classical solution of the first mixed problem for second-order hyperbolic equation in curvilinear half-strip with variable coefficients. Differential Equations. 2017;53(1):74–85. DOI: 10.1134/s0012266117010074.
- Korzyuk VI, Naumavets SN, Serikov VP. Mixed problem for a one-dimensional wave equation with conjugation conditions and second-order derivatives in boundary conditions. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2020;56(3):287–297. Russian. DOI: 10.29235/1561-2430-2020-56-3-287-297.
- Korzyuk VI, Rudzko JV. The classical solution of one problem of an absolutely inelastic impact on a long elastic semi-infinite bar. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2021;57(4):417–427. Russian. DOI: 10.29235/1561-2430-2021-57-4-417-427.
- Korzyuk VI, Rudzko JV. The classical solution of the mixed problem for the one-dimensional wave equation with the nonsmooth second initial condition. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2021;57(1):23–32. Russian. DOI: 10.29235/1561-2430-2021-57-1-23-32.
- Korzyuk VI, Rudzko JV. Classical solution of the mixed problem for the one-dimensional wave equation with the nonsmooth second initial condition. Doklady of the National Academy of Sciences of Belarus. 2020;64(6):657–662. Russian. DOI: 10.29235/1561-8323-2020-64-6-657-662.
Copyright (c) 2023 Журнал Белорусского государственного университета. Математика. Информатика

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.
Авторы, публикующиеся в данном журнале, соглашаются со следующим:
- Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- Авторы сохраняют право заключать отдельные контрактные договоренности, касающиеся неэксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге) со ссылкой на ее оригинальную публикацию в этом журнале.
- Авторы имеют право размещать их работу в интернете (например, в институтском хранилище или на персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу. (См. The Effect of Open Access).