Решения задач с разрывными условиями для волнового уравнения

  • Виктор Иванович Корзюк Институт математики НАН Беларуси, ул. Сурганова, 11, 220072, г. Минск, Беларусь; Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь
  • Ян Вячеславович Рудько Институт математики НАН Беларуси, ул. Сурганова, 11, 220072, г. Минск, Беларусь
  • Владислав Владимирович Колячко Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Аннотация

Рассмотрены различные подходы к решению смешанных задач с разрывными условиями для волнового уравнения, основанные на функциональных и классических методах. Показаны отличия в решениях, которые соответствуют разным методам (преобразование Лапласа и метод характеристик) и определениям. Результаты продемонстрированы на одной смешанной задаче из теории механического удара о продольных колебаниях полубесконечного упругого стержня с разрывными начальными и граничными условиями. Модельным примером служит задача о колебаниях стержня после продольного удара в торец (в частности, после выстрела пластилиновой пулей, прилипающей к концу стержня).

Биографии авторов

Виктор Иванович Корзюк, Институт математики НАН Беларуси, ул. Сурганова, 11, 220072, г. Минск, Беларусь; Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

доктор физико-математических наук, академик НАН Беларуси, профессор; главный научный сотрудник отдела дифференциальных уравнений Института математики НАН Беларуси, профессор кафедры математической кибернетики механико-математического факультета Белорусского государственного университета

Ян Вячеславович Рудько, Институт математики НАН Беларуси, ул. Сурганова, 11, 220072, г. Минск, Беларусь

младший научный сотрудник отдела дифференциальных уравнений

Владислав Владимирович Колячко, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

ассистент кафедры системного анализа и компьютерного моделирования факультета радиофизики и компьютерных технологий

Литература

  1. Zhuravkov MA, Starovoitov EI. Matematicheskie modeli mekhaniki tverdykh tel [Mathematical models of solid mechanics]. Minsk: Belarusian State University; 2021. 535 p. (Klassicheskoe universitetskoe izdanie). Russian.
  2. Hadamard J. Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa [Cauchy’s problem for linear partial differential equations of hyperbolic type]. Shugaev FV, translator; Belotserkovskii OM, editor. Moscow: Nauka; 1978. 352 p. Russian.
  3. Babeshko VA, Ratner SV, Syromyatnikov PV. On mixed problems for thermoelectroelastic media with discontinuous boundary conditions. Doklady Physics. 2007;52(2):90–95. DOI: 10.1134/s102833580702005x.
  4. Glushko AV, Baeva SA. Upon an initial-boundary value hydrodynamic problem with discontinuous boundary conditions. Proceedings of Voronezh State University. Series: Physics. Mathematics. 2005;2:128–132. Russian.
  5. Trogdon T, Biondini G. Evolution partial differential equations with discontinuous data. Quarterly of Applied Mathematics. 2019;77(4):689–726. DOI: 10.1090/qam/1526.
  6. Kozlov VP, Mandrik PA, Yurchuk NI. Method for solving nonstationary heat problems with mixed discontinuous boundary conditions on the boundary of a half-space. Differential Equations. 2001;37(8):1171–1175. DOI: 10.1023/A:1012431821479.
  7. Kozlov VP, Mandrik PA. Solution of nonlinear two‐dimensional differential equations of transfer with discontinuity boundary conditions on the surface of an isotropic semiinfinite body in its heating through a circle of known radius. Journal of Engineering Physics and Thermophysics. 2001;74(2):471–476. DOI: 10.1023/A:1016685329003.
  8. Gaiduk SI, Dobrushkin VA. [Solution of a problem in the theory of thermoelasticity related to mechanical and thermal impacts]. Differentsial’nye uravneniya. 1979;15(9):1632–1645. Russian.
  9. Cerv J, Adamek V, Vales F, Gabriel D, Plesek J. Wave motion in a thick cylindrical rod undergoing longitudinal impact. Wave Motion. 2016;66:88–105. DOI: 10.1016/j.wavemoti.2016.05.007.
  10. Yurchuk NI, Kozlov VP, Mandrik PA. A method of paired integral equations in the region of laplace transforms for solving nonstationary heat conduction problems with mixed discontinuous boundary conditions. Journal of Engineering Physics and Thermophysics. 1999;72(3):534–549. DOI: 10.1007/BF02699221.
  11. Kozlov VP, Yurchuk NI, Mandrik PA. Method of paired integral equations in the region of L-transforms for solving two-dimensional problems of nonstationary heat conduction with mixed boundary conditions. Journal of Engineering Physics and Thermophysics. 1998;71(4):731–739. DOI: 10.1007/BF03449555.
  12. Korzyuk VI, Rudzko JV. The problem of a longitudinal impact on an elastic bar with an elastic attachment of one of its ends. In: Gusev OK, Vorobei RI, Gurevich VL, Knyazev MA, Kuleshov NV, Malyarevich AM, et al., editors. Instrumentation Engineering – 2022. Proceedings of the 15th International scientific and technical conference; 2022 November 16–18; Minsk, Belarus. Minsk: Belarusian National Technical University; 2022. p. 305–307. Russian.
  13. Bakhshinyan RM, Veinert YaV, Denisova IV. [On a method for solving the problem of nonstationary heat conduction of a ball with discontinuous boundary conditions]. In: Shul’ga OA, Akhmetova MN, Ivanova YuV, Laktionov KS, Komogortsev MG, Akhmetova VV, et al., editors. Tekhnicheskie nauki: teoriya i praktika. Materialy Mezhdunarodnoi zaochnoi nauchnoi konferentsii; aprel’ 2012 g.; Chita, Rossiya [Technical sciences: theory and practice. Proceedings of the International correspondence scientific conference; April 2012; Chita, Russia]. Chita: Molodoi uchenyi; 2012. p. 120–123. Russian.
  14. Gaiduk SI. Application of the contour integral method to the solution of a problem on transverse vibrations of a viscoelastic membrane caused by an impact. Differential Equations. 1991;27(8):977–985.
  15. Akhondizadeh M. Analytical solution of the longitudinal wave propagation due to the single impact. Journal of Low Frequency Noise, Vibration and Active Control. 2018;37(4):849–858. DOI: 10.1177/1461348418793122.
  16. Belyaev AK, Morozov NF, Tovstik PE, Tovstik TP. Beating in the problem of longitudinal impact on a thin rod. Mechanics of Solids. 2015;50(4):451–462. DOI: 10.3103/s0025654415040111.
  17. Belyaev AK, Morozov NF, Tovstik PE, Tovstik TP. Parametric resonances in the problem of longitudinal impact on a thin rod. Vestnik St. Petersburg University. Mathematics. 2016;49(1):53–67. DOI: 10.3103/s1063454116010040.
  18. Valeš F, Morávka Š, Brepta R, Červ J. Wave propagation in a thick cylindrical bar due to longitudinal impact. JSME International Journal. Series A, Solid Mechanics and Material Engineering. 1996;39(1):60–70. DOI: 10.1299/jsmea1993.39.1_60.
  19. Yurko V. Integral transforms connected with discontinuous boundary value problems. Integral Transforms and Special Functions. 2000;10(2):141–164. DOI: 10.1080/10652460008819282.
  20. Bateman H. Physical problems with discontinuous initial conditions. PNAS. 1930;16(3):205–211. DOI: 10.1073/pnas.16.3.205.
  21. Polyanin AD. Handbook of linear partial differential equations for engineers and scientists. New York: Chapman & Hall/CRC; 2001. 800 p. DOI: 10.1201/9781420035322.
  22. Pikulin VP, Pokhozhaev SI. Prakticheskii kurs po uravneniyam matematicheskoi fiziki [Equations in mathematical physics: a practical course]. 2nd edition. Moscow: Moscow Center for Continuous Mathematical Education; 2004. 208 p. Russian.
  23. Korzyuk VI, Rudzko JV. Classical solution of one problem of a perfectly inelastic impact on a long elastic semi-infinite bar with a linear elastic element at the end. Journal of the Belarusian State University. Mathematics and Informatics. 2022;2:34–46. Russian. DOI: 10.33581/2520-6508-2022-2-34-46.
  24. Rozhdestvenskii BL, Yanenko NN. Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike [Systems of quasilinear equations and their applications to gas dynamics]. 2nd edition. Moscow: Nauka; 1978. 688 p. Russian.
  25. Whitham GB. Linear and nonlinear waves. New York: John Wiley & Sons; 1999. XVI, 636 p. (Pure and applied mathematics; volume 1237). DOI: 10.1002/9781118032954.
  26. Kulikovskii AG, Sveshnikova EI, Chugainova AP. Matematicheskie metody izucheniya razryvnykh reshenii nelineinykh giperbolicheskikh sistem uravnenii [Mathematical methods for studying discontinuous solutions of nonlinear hyperbolic systems of equations]. Moscow: Steklov Mathematical Institute of Russian Academy of Sciences; 2010. 120 p. (Lektsionnye kursy NOTs; issue 16). Russian. DOI: 10.4213/lkn16.
  27. Ladyzhenskaya OA. [Sixth problem of the millennium: Navier – Stokes equations, existence and smoothness]. Uspekhi matematicheskikh nauk. 2003;58(2):45–78. Russian. DOI: 10.4213/rm610.
  28. Korzyuk VI, Kozlovskaya IS. Klassicheskie resheniya zadach dlya giperbolicheskikh uravnenii. Chast’ 2 [Classical solutions of problems for hyperbolic equations. Part 2]. Minsk: Belarusian State University; 2017. 48 p. Russian.
  29. Koshlyakov NS, Gliner EB, Smirnov MM. Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki [Partial differential equations of mathematical physics]. Moscow: Vysshaya shkola; 1970. 712 p. Russian.
  30. Nowacki WK. Zagadnienia falowe w teorii plastyczności. Warszawa: Państwowe Wydawnictwo Naukowe; 1974. 207 s. (Biblioteka mechaniki stosowanej). Russian edition: Nowacki WK. Volnovye zadachi teorii plastichnosti. Shachnev VA, translator; Shapiro GS, editor. Moscow: Mir; 1978. 307 p.
  31. Gorbach NI. Teoreticheskaya mekhanika. Dinamika [Theoretical mechanics. Dynamics]. 2nd edition. Minsk: Vyshjejshaja shkola; 2012. 320 p. Russian.
  32. Rabotnov YuN. Mekhanika deformiruemogo tverdogo tela [Mechanics of deformable solid]. Moscow: Nauka; 1979. 744 p. Russian.
  33. Korzyuk VI. Uravneniya matematicheskoi fiziki [Equations of mathematical physics]. 2nd edition. Moscow: URSS; 2021. 480 p. Russian.
  34. Yurchuk NI, Novikov EN. Necessary conditions for existence of classical solutions to the equation of semi-bounded string vibration. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2016;4:116–120. Russian.
  35. Lomovtsev FE, Lysenko VV. Non-characteristic mixed problem for a one-dimensional wave equation in the first quarter of the plane with non-stationary boundary second derivatives. Vesnik Vicebskaga dzjarzhawnaga wniversitjeta. 2019;3:5–17. Russian.
  36. Lysenko VV, Lomovtsev FE. [Solution and well-posedness criterion for a mixed problem for the general equation of vibrations of a semi-bounded string with non-characteristic and non-stationary second derivatives on the boundary]. In: Demenchuk AK, Krasovskii SG, Makarov EK, editors. Eruginskie chteniya – 2019. Materialy XIX Mezhdunarodnoi nauchnoi konferentsii po differentsial’nym uravneniyam; 14–17 maya 2019 g.; Mogilev, Belarus’. Chast’ 2 [Erugin readings – 2019. Proceedings of the 19th International scientific conference on differential equations; 2019 May 14–17; Mogilev, Belarus. Part 2]. Minsk: Institute of Mathematics of the National Academy of Sciences of Belarus; 2019. p. 30–32. Russian.
  37. Korzyuk VI, Kovnatskaya OA. Solutions of problems for the wave equation with conditions on the characteristics. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2021;57(2):148–155. Russian. DOI: 10.29235/1561-2430-2021-57-2-148-155.
  38. Korzyuk VI, Kovnatskaya OA. [The Goursat problem on the plane for a quasilinear hyperbolic equation]. In: Amel’kin VV, Antonevich AB, Astrovskii AI, Bashun SYu, Vas’kovskii MM, Gladkov AL, et al., editors. Eruginskie chteniya – 2022. Materialy XX Mezhdunarodnoi nauchnoi konferentsii po differentsial’nym uravneniyam; 31 maya – 3 iyunya 2022 g.; Novopolotsk, Belarus’. Chast’ 2 [Erugin readings – 2022. Proceedings of the 20th International scientific conference on differential equations; 2022 May 31 – June 3; Novopolotsk, Belarus. Part 2]. Novopolotsk: Polotsk State University; 2022. p. 16–17. Russian.
  39. Korzyuk VI, Stolyarchuk II. Classical solution of the first mixed problem for second-order hyperbolic equation in curvilinear half-strip with variable coefficients. Differential Equations. 2017;53(1):74–85. DOI: 10.1134/s0012266117010074.
  40. Korzyuk VI, Naumavets SN, Serikov VP. Mixed problem for a one-dimensional wave equation with conjugation conditions and second-order derivatives in boundary conditions. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2020;56(3):287–297. Russian. DOI: 10.29235/1561-2430-2020-56-3-287-297.
  41. Korzyuk VI, Rudzko JV. The classical solution of one problem of an absolutely inelastic impact on a long elastic semi-infinite bar. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2021;57(4):417–427. Russian. DOI: 10.29235/1561-2430-2021-57-4-417-427.
  42. Korzyuk VI, Rudzko JV. The classical solution of the mixed problem for the one-dimensional wave equation with the nonsmooth second initial condition. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. 2021;57(1):23–32. Russian. DOI: 10.29235/1561-2430-2021-57-1-23-32.
  43. Korzyuk VI, Rudzko JV. Classical solution of the mixed problem for the one-dimensional wave equation with the nonsmooth second initial condition. Doklady of the National Academy of Sciences of Belarus. 2020;64(6):657–662. Russian. DOI: 10.29235/1561-8323-2020-64-6-657-662.
Опубликован
2023-12-13
Ключевые слова: одномерное волновое уравнение, неоднородное уравнение, смешанная задача, разрывные начальные условия, разрывные граничные условия, продольный удар, метод характеристик, преобразование Лапласа
Поддерживающие организации Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках реализации программы Московского центра фундаментальной и прикладной математики (соглашение № 075-15-2022-284) и Национальной академии наук Беларуси (договор № 2023-25-019).
Как цитировать
Корзюк, В. И., Рудько, Я. В., & Колячко, В. В. (2023). Решения задач с разрывными условиями для волнового уравнения. Журнал Белорусского государственного университета. Математика. Информатика, 3, 6-18. Доступно по https://journals.bsu.by/index.php/mathematics/article/view/5397
Раздел
Дифференциальные уравнения и оптимальное управление