On the embedding of the Ω-saturation of a topological space

  • Aliaksandr S. Biadrytski Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus https://orcid.org/0000-0001-6187-2871
  • Vladimir L. Timokhovich Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

Abstract

The countably-compactification of a topological space X is such its extension Y, that Y is a completely regular and countably-compact space, and any closed countably-compact subset of X is closed in Y. But this extension does not always exist. Due to this, the concept of a saturation of a topological space appeared, which is a generalisation of the countably-compactification: instead of the condition of the countably-compactness of Y, it is necessary that any infinite subset of X has a limit point in Y. Meanwhile, the second condition remains unchanged. Such an extension is already defined for any T1-space. In this paper we consider a specific construction of saturation named as Ω-saturation. It is proved that under some additional (necessary and sufficient) condition to the separation of the initial space X, its Ω-saturation is canonically embedded in the Stone – Čech compactification βX. An analogous result is obtained for the countably-compactification by K. Morita.

Author Biographies

Aliaksandr S. Biadrytski, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

master’s degree student at the department of geometry, topology and mathematics teaching methodology, faculty of mechanics and mathematics

Vladimir L. Timokhovich, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics), docent; associate professor at the department of geometry, topology and mathematics teaching methodology, faculty of mechanics and mathematics

References

  1. Arkhangel’skii AV. [One class of spaces containing all metric and all locally compact spaces]. Matematicheskii sbornik. 1965;67(1):55–88. Russian.
  2. Nagata J. A note on M-space and topologically complete space. Proceedings of the Japan Academy. 1969;45(7):541–543. DOI: 10.3792/pja/1195520664.
  3. Morita K. Products of normal spaces with metric spaces. Mathematische Annalen. 1964;154(4):365–382. DOI: 10.1007/BF01362570.
  4. Morita K. A survey of the theory of M-spaces. General Topology and its Applications. 1971;1(1):49–55. DOI: 10.1016/0016-660X(71)90110-3.
  5. Morita K. Countably-compactifiable spaces. Science Reports of the Tokyo Kyoiku Daigaku. Section A. 1973;12(313/328):7–15.
  6. Burke DK, van Douwen EK. On countably compact extensions of normal locally compact M-spaces. In: Reed GM, editor. Set-theoretic topology. New York: Academic Press; 1977. p. 81–89. DOI: 10.1016/B978-0-12-584950-0.50012-2.
  7. Goldovt IYu, Timokhovich VL. [Saturations of topological spaces and the Morita problem]. Doklady Akademii nauk BSSR. 1977;21(9):777–780. Russian.
  8. Kukrak HO, Timokhovich VL. On the countably-compactifiability in the sense of Morita. Journal of the Belarusian State University. Mathematics and Informatics. 2021;1:46–53. Russian. DOI: 10.33581/2520-6508-2021-1-46-53.
  9. Engelking R. General topology. Warszawa: Polish Scientific Publishers; 1977. 626 p. (Monografie matematyczne; tom 60). Russian edition: Engelking R. Obshchaya topologiya. Antonovskii MYa, Arkhangel’skii AV, translators. Moscow: Mir; 1986. 752 p.
  10. Arkhangel’skii AV. [Compactness]. Itogi nauki i tekhniki. Seriya: Sovremennye problemy matematiki. Fundamental’nye napravleniya. 1989;50:5–128. Russian.
  11. Kukrak HO, Timokhovich VL. [On the limit of the inverse spectrum of exponential spaces]. Vestnik BGU. Seriya 1. Fizika. Matematica. Informatica. 2001;1:51–55. Russian.
  12. Frolova DS. On the family of sequentially proper topologies on the space of maps. Trudy Instituta matematiki. 2013;21(1):102–108. Russian.
Published
2022-04-01
Keywords: saturation of a topological space, countably-compactification in the sense of Morita, Ω-saturation of a topological space, Wallman compactification, ∆-base, Stone – Čech compactification
How to Cite
Biadrytski, A. S., & Timokhovich, V. L. (2022). On the embedding of the Ω-saturation of a topological space. Journal of the Belarusian State University. Mathematics and Informatics, 1, 21-25. https://doi.org/10.33581/2520-6508-2022-1-21-25