The small parameter method in the optimisation of a quasi-linear dynamical system problem

  • Anatoly I. Kalinin Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Leonid I. Lavrinovich Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus https://orcid.org/0000-0002-7698-0207
  • Darya Y. Prudnikova Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

Abstract

We consider an optimisation problem for the transient process in a quasi-linear dynamical system (contains a small parameter at non-linearities) with a performance index that is a linear combination of energy costs and the duration of the process. An algorithm for constructing asymptotic approximations of a given order to the solution of this problem is proposed. The algorithm is based on the asymptotic decomposition by integer powers of a small parameter of the initial values of adjoint variables and the duration of the process that are finite-dimensional elements, according to which the solution of the problem is easily restored. The computational procedure of the algorithm includes solving the problem of optimising the transient process in a linear dynamical system, integrating systems of linear differential equations, and finding the roots of non-degenerate linear algebraic systems. We also show how the constructed asymptotic approximations can be used to construct optimal control in the problem under consideration for a given value of a small parameter.

Author Biographies

Anatoly I. Kalinin, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

doctor of science (physics and mathematics), full professor; professor at the department of optimal control methods, faculty of applied mathematics and computer science

Leonid I. Lavrinovich, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics), docent; associate professor at the department of optimal control methods, faculty of applied mathematics and computer science

Darya Y. Prudnikova, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

student at the faculty of applied mathematics and computer science

References

  1. Krasovskii NN. Teoriya upravleniya dvizheniem: lineinye sistemy [Theory of control of motion: linear systems]. Moscow: Nauka; 1968. 476 p. Russian.
  2. Kiselev YuN. [Asymptotic solution of time-optimal problem for near-linear control systems]. Doklady Akademii nauk SSSR. 1968;182(1):31–34. Russian.
  3. Falb PL, de Jong JL. Some successive approximation methods in control and oscillation theory. New York: Academic Press; 1969. VIII, 240 p. (Mathematics in science and engineering; volume 59).
  4. Chernous’ko FL, Akulenko LD, Sokolov BN. Upravlenie kolebaniyami [Control of oscillations]. Moscow: Nauka; 1980. 383 p. Teoreticheskie osnovy tekhnicheskoi kibernetiki). Russian.
  5. Kalinin AI. Asimptoticheskie metody optimizatsii vozmushchennykh dinamicheskikh sistem [Asymptotic methods for optimisation of disturbed dynamical systems]. Minsk: Ekoperspektiva; 2000. 187 p. Russian.
  6. Akulenko LD. [Optimal control of motions of a bifilar pendulum]. Prikladnaya matematika i mekhanika. 2004;68(5):793–806. Russian.
  7. Kalinin AI, Lavrinovich LI. [Asymptotics of the solution to the minimisation problem of the integral quadratic performance index on trajectories of a quasi-linear system]. Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya. 2019;5:32–43. Russian. DOI: 10.1134/S0002338819050056.
  8. Gabasov R, Kalinin AI, Kirillova FM, Lavrinovich LI. On asymptotic optimization methods for quasilinear control systems. Trudy Instituta matematiki i mekhaniki UrO RAN. 2019;25(3):62–72. Russian. DOI: 10.21538/0134-4889-2019-25-3-62-72.
  9. Kalinin AI. Asymptotic optimization of perturbed dynamical systems. Vestnik BGU. Seriya 1. Fizika. Matematika. Informatika. 2016;3:143–147. Russian.
  10. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF. Matematicheskaya teoriya optimal’nykh protsessov [The mathematical theory of optimal processes]. 4th edition. Moscow: Nauka; 1983. 392 p. Russian.
  11. Gabasov R, Kirillova FM. Optimizatsiya lineinykh sistem: metody funktsional’nogo analiza [Optimisation of linear systems: functional analysis methods]. Minsk: Publishing House of the Belarusian State University; 1973. 246 p. Russian.
  12. Mordukhovich BSh. [Existence of optimal controls]. Itogi nauki i tekhniki. Sovremennye problemy matematiki. 1976;6:207–271. Russian.
  13. Kalinin AI. [To the synthesis of optimal control systems]. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki. 2018;58(3):397–402. Russian. DOI: 10.7868/S0044466918030079.
  14. Kalinin AI. [An algorithm for the asymptotic solution of a singularly perturbed non-linear time-optimality problem]. Differentsial’nye uravneniya. 1990;26(4):585–594. Russian.
  15. Kalinin AI. [Optimisation of quasi-linear control systems]. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki. 1988;28(3):325–334. Russian.
  16. Gabasov R, Kirillova FM. Konstruktivnye metody optimizatsii. Chast’ 2. Zadachi upravleniya [Constructive optimisation methods. Part 2. Control problems]. Minsk: Universitetskoe; 1984. 207 p. Russian.
Published
2022-06-24
Keywords: small parameter, quasi-linear system, optimal control, asymptotic approximations
How to Cite
Kalinin, A. I., Lavrinovich, L. I., & Prudnikova, D. Y. (2022). The small parameter method in the optimisation of a quasi-linear dynamical system problem. Journal of the Belarusian State University. Mathematics and Informatics, 2, 23-33. https://doi.org/10.33581/2520-6508-2022-2-23-33