The small parameter method in the optimisation of a quasi-linear dynamical system problem
Abstract
We consider an optimisation problem for the transient process in a quasi-linear dynamical system (contains a small parameter at non-linearities) with a performance index that is a linear combination of energy costs and the duration of the process. An algorithm for constructing asymptotic approximations of a given order to the solution of this problem is proposed. The algorithm is based on the asymptotic decomposition by integer powers of a small parameter of the initial values of adjoint variables and the duration of the process that are finite-dimensional elements, according to which the solution of the problem is easily restored. The computational procedure of the algorithm includes solving the problem of optimising the transient process in a linear dynamical system, integrating systems of linear differential equations, and finding the roots of non-degenerate linear algebraic systems. We also show how the constructed asymptotic approximations can be used to construct optimal control in the problem under consideration for a given value of a small parameter.
References
- Krasovskii NN. Teoriya upravleniya dvizheniem: lineinye sistemy [Theory of control of motion: linear systems]. Moscow: Nauka; 1968. 476 p. Russian.
- Kiselev YuN. [Asymptotic solution of time-optimal problem for near-linear control systems]. Doklady Akademii nauk SSSR. 1968;182(1):31–34. Russian.
- Falb PL, de Jong JL. Some successive approximation methods in control and oscillation theory. New York: Academic Press; 1969. VIII, 240 p. (Mathematics in science and engineering; volume 59).
- Chernous’ko FL, Akulenko LD, Sokolov BN. Upravlenie kolebaniyami [Control of oscillations]. Moscow: Nauka; 1980. 383 p. Teoreticheskie osnovy tekhnicheskoi kibernetiki). Russian.
- Kalinin AI. Asimptoticheskie metody optimizatsii vozmushchennykh dinamicheskikh sistem [Asymptotic methods for optimisation of disturbed dynamical systems]. Minsk: Ekoperspektiva; 2000. 187 p. Russian.
- Akulenko LD. [Optimal control of motions of a bifilar pendulum]. Prikladnaya matematika i mekhanika. 2004;68(5):793–806. Russian.
- Kalinin AI, Lavrinovich LI. [Asymptotics of the solution to the minimisation problem of the integral quadratic performance index on trajectories of a quasi-linear system]. Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya. 2019;5:32–43. Russian. DOI: 10.1134/S0002338819050056.
- Gabasov R, Kalinin AI, Kirillova FM, Lavrinovich LI. On asymptotic optimization methods for quasilinear control systems. Trudy Instituta matematiki i mekhaniki UrO RAN. 2019;25(3):62–72. Russian. DOI: 10.21538/0134-4889-2019-25-3-62-72.
- Kalinin AI. Asymptotic optimization of perturbed dynamical systems. Vestnik BGU. Seriya 1. Fizika. Matematika. Informatika. 2016;3:143–147. Russian.
- Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF. Matematicheskaya teoriya optimal’nykh protsessov [The mathematical theory of optimal processes]. 4th edition. Moscow: Nauka; 1983. 392 p. Russian.
- Gabasov R, Kirillova FM. Optimizatsiya lineinykh sistem: metody funktsional’nogo analiza [Optimisation of linear systems: functional analysis methods]. Minsk: Publishing House of the Belarusian State University; 1973. 246 p. Russian.
- Mordukhovich BSh. [Existence of optimal controls]. Itogi nauki i tekhniki. Sovremennye problemy matematiki. 1976;6:207–271. Russian.
- Kalinin AI. [To the synthesis of optimal control systems]. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki. 2018;58(3):397–402. Russian. DOI: 10.7868/S0044466918030079.
- Kalinin AI. [An algorithm for the asymptotic solution of a singularly perturbed non-linear time-optimality problem]. Differentsial’nye uravneniya. 1990;26(4):585–594. Russian.
- Kalinin AI. [Optimisation of quasi-linear control systems]. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki. 1988;28(3):325–334. Russian.
- Gabasov R, Kirillova FM. Konstruktivnye metody optimizatsii. Chast’ 2. Zadachi upravleniya [Constructive optimisation methods. Part 2. Control problems]. Minsk: Universitetskoe; 1984. 207 p. Russian.
Copyright (c) 2022 Journal of the Belarusian State University. Mathematics and Informatics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who are published in this journal agree to the following:
- The authors retain copyright on the work and provide the journal with the right of first publication of the work on condition of license Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- The authors retain the right to enter into certain contractual agreements relating to the non-exclusive distribution of the published version of the work (e.g. post it on the institutional repository, publication in the book), with the reference to its original publication in this journal.
- The authors have the right to post their work on the Internet (e.g. on the institutional store or personal website) prior to and during the review process, conducted by the journal, as this may lead to a productive discussion and a large number of references to this work. (See The Effect of Open Access.)