Компьютерная наглядность при обучении математике
Аннотация
Раскрывается сущность компьютерной наглядности как активной формы деятельности студента в процессе обучения математике с учетом психофизиологических возможностей человека. Показывается, что осознанное усвоение математических методов и понимание формул невозможны при опоре только на логический компонент мышления. Анализируется понимающее усвоение математического материала при наглядно-модельном обучении на основе принципа моделирования, рассматриваемого в качестве высшей ступени принципа наглядности. Выделяются три уровня когнитивной визуализации на экране монитора, используемой для сжатия и преобразования учебной информации: визуализация данных; визуализация информации; визуализация знаний. Приводятся результаты экспериментального исследования эффективности компьютерной наглядности.
Литература
- Il’ina TA. Pedagogika [Pedagogy]. Moscow: Prosveshchenie; 1984. 496 p. Russian.
- Abdulaev EN. [Using visual information in history teaching]. Prepodavanie istorii v shkole. 2012;10:7–11. Russian.
- Reznik NA. [Visualisation of educational content in the modern information space]. In: Tripol’skii RI, editor. Information-educational environment of a present day high educational institution as a factor of improving education quality. International scientific conference; 2007 November 1–3; Murmansk, Russia. Murmansk: Murmansk Arctic State University; 2007. p. 24–26. Russian.
- Leont’ev AN. Izbrannye psikhologicheskie proizvedeniya. Tom 1 [Selected psychological works. Volume 1]. Davydov VV, Zinchenko VP, Leont’ev AA, Petrovskii AV, editors. Moscow: Pedagogika; 1983. 392 p. Russian.
- Lungu KN, Lungu AK. [Visibility in teaching mathematics to students of technical universities]. Obrazovatel’nye tekhnologii. 2012;1:107–113. Russian.
- Denisovets DA, Kazachenok VV. [Visibility in teaching mathematics in the context of information technology]. Matjematyka. 2021;3:3–10. Russian.
- Reznik NA. Metodicheskie osnovy obucheniya matematike v srednei shkole s ispol’zovaniem sredstv razvitiya vizual’nogo myshleniya [Methodological foundations of teaching mathematics in secondary school using visual thinking development tools; dissertation]. Saint Petersburg: [s. n.]; 1997. 500 p. Russian.
- Bezruchko AS. Metodika obucheniya resheniyu differentsial’nykh uravnenii budushchikh uchitelei informatiki, osnovannaya na ispol’zovanii informatsionnykh tekhnologii [Methods of teaching the solution of differential equations to future computer science teachers based on the use of information technology; dissertation]. Moscow: [s. n.]; 2014. 211 p. Russian.
- Stolyar AA. Pedagogika matematiki [Pedagogy of mathematics]. 3rd edition. Minsk: Vyshjejshaja shkola; 1986. 414 p. Russian.
- Zhuk YuA. Didakticheskie usloviya ispol’zovaniya displeinykh form naglyadnosti v obuchenii studentov [Didactic conditions for the use of display forms of visibility in teaching students; dissertation]. Saint Petersburg: [s. n.]; 2010. 193 p. Russian.
- Masud L, Valsecchi F, Ciuccarelli P, Ricci D, Caviglia G. From data to knowledge. Visualizations as transformation processes within the data – information – knowledge continuum. In: 14th International conference information visualisation; 2010 July 26–29; London, UK. [s. l.]: IEEE; 2010. p. 445–449. DOI: 10.1109/IV.2010.68.
- Okoń W. Wprowadzenie do dydaktyki ogólnej. Warszawa: Państwowe wydawnictwo naukowe; 1987. 455 s. Russian edition: Okoń W. Vvedenie v obshchuyu didaktiku. Kashkurevich LG, Gorin NG, translators. Moscow: Vysshaya shkola; 1990. 382 p.
- Belonogova EA. Simulation, as the main component of visual teaching mathematics engineers-bachelors. Modern High Technologies. 2016;2(part 1):65–69. Russian.
- Sokhor AM. Ob’yasnenie v protsesse obucheniya: elementy didakticheskoi kontseptsii [Explanation in the learning process: elements of a didactic concept]. Moscow: Pedagogika; 1988. 128 p. Russian.
- Kolyagin YuM. Zadachi v obuchenii matematike [Tasks in teaching mathematics]. Moscow: Prosveshchenie; 1977. 2 parts. Russian.
- Naimanov BA. Realizatsiya prikladnoi napravlennosti prepodavaniya differentsial’nykh uravnenii v pedagogicheskom institute [Implementation of the applied orientation of teaching differential equations at the pedagogical institute; dissertation]. Moscow: [s. n.]; 1992. 172 p. Russian.
- Kazachenok VV. [Computer functions as a means of organizing controlled self-learning of students]. Informatika i obrazovanie. 2006;10:104–106. Russian.
- Kazachenok VV. [Trends and models of education development in the 21st century]. Matjematyka. 2018;5:3–8. Russian.
- Simonov VP. Diagnostika stepeni obuchennosti uchashchikhsya [Diagnostics of the degree of training of students]. Moscow: MRA; 1999. 48 p. Russian.
- Usova AV. Formirovanie u shkol’nikov nauchnykh ponyatii v protsesse obucheniya [Formation of scientific concepts in schoolchildren in the learning process]. Moscow: Pedagogika; 1986. 176 p. Russian.
- Kazachenok VV. Upravlyaemoe samoobuchenie uchashchikhsya resheniyu zadach uglublennogo kursa matematiki sredstvami sovremennykh informatsionnykh tekhnologii [Guided self-study of students in solving problems of an in-depth course of mathematics by means of modern information technologies]. Minsk: Belarusian State University; 2006. 247 p. Russian.
- Novikov DA. Statisticheskie metody v pedagogicheskikh issledovaniyakh (tipovye sluchai) [Statistical methods in pedagogical research (typical cases)]. Moscow: MZ-Press; 2004. 67 p. Russian.