Компьютерная наглядность при обучении математике

  • Денис Алексеевич Денисовец Могилёвский государственный университет им. А. А. Кулешова, ул. Космонавтов, 1, 212022, г. Могилёв, Беларусь
  • Виктор Владимирович Казаченок Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Аннотация

Раскрывается сущность компьютерной наглядности как активной формы деятельности студента в процессе обучения математике с учетом психофизиологических возможностей человека. Показывается, что осознанное усвоение математических методов и понимание формул невозможны при опоре только на логический компонент мышления. Анализируется понимающее усвоение математического материала при наглядно-модельном обучении на основе принципа моделирования, рассматриваемого в качестве высшей ступени принципа наглядности. Выделяются три уровня когнитивной визуализации на экране монитора, используемой для сжатия и преобразования учебной информации: визуализация данных; визуализация информации; визуализация знаний. Приводятся результаты экспериментального исследования эффективности компьютерной наглядности.

Биографии авторов

Денис Алексеевич Денисовец, Могилёвский государственный университет им. А. А. Кулешова, ул. Космонавтов, 1, 212022, г. Могилёв, Беларусь

старший преподаватель кафедры методики преподавания математики факультета математики и естествознания

Виктор Владимирович Казаченок, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

доктор педагогических наук, профессор; заведующий кафедрой компьютерных технологий и систем факультета прикладной математики и информатики

Литература

  1. Il’ina TA. Pedagogika [Pedagogy]. Moscow: Prosveshchenie; 1984. 496 p. Russian.
  2. Abdulaev EN. [Using visual information in history teaching]. Prepodavanie istorii v shkole. 2012;10:7–11. Russian.
  3. Reznik NA. [Visualisation of educational content in the modern information space]. In: Tripol’skii RI, editor. Information-educational environment of a present day high educational institution as a factor of improving education quality. International scientific conference; 2007 November 1–3; Murmansk, Russia. Murmansk: Murmansk Arctic State University; 2007. p. 24–26. Russian.
  4. Leont’ev AN. Izbrannye psikhologicheskie proizvedeniya. Tom 1 [Selected psychological works. Volume 1]. Davydov VV, Zinchenko VP, Leont’ev AA, Petrovskii AV, editors. Moscow: Pedagogika; 1983. 392 p. Russian.
  5. Lungu KN, Lungu AK. [Visibility in teaching mathematics to students of technical universities]. Obrazovatel’nye tekhnologii. 2012;1:107–113. Russian.
  6. Denisovets DA, Kazachenok VV. [Visibility in teaching mathematics in the context of information technology]. Ma­tjematyka. 2021;3:3–10. Russian.
  7. Reznik NA. Metodicheskie osnovy obucheniya matematike v srednei shkole s ispol’zovaniem sredstv razvitiya vizual’nogo myshleniya [Methodological foundations of teaching mathematics in secondary school using visual thinking development tools; dissertation]. Saint Petersburg: [s. n.]; 1997. 500 p. Russian.
  8. Bezruchko AS. Metodika obucheniya resheniyu differentsial’nykh uravnenii budushchikh uchitelei informatiki, osnovannaya na ispol’zovanii informatsionnykh tekhnologii [Methods of teaching the solution of differential equations to future computer science teachers based on the use of information technology; dissertation]. Moscow: [s. n.]; 2014. 211 p. Russian.
  9. Stolyar AA. Pedagogika matematiki [Pedagogy of mathematics]. 3rd edition. Minsk: Vyshjejshaja shkola; 1986. 414 p. Russian.
  10. Zhuk YuA. Didakticheskie usloviya ispol’zovaniya displeinykh form naglyadnosti v obuchenii studentov [Didactic conditions for the use of display forms of visibility in teaching students; dissertation]. Saint Petersburg: [s. n.]; 2010. 193 p. Russian.
  11. Masud L, Valsecchi F, Ciuccarelli P, Ricci D, Caviglia G. From data to knowledge. Visualizations as transformation processes within the data – information – knowledge continuum. In: 14th International conference information visualisation; 2010 July 26–29; London, UK. [s. l.]: IEEE; 2010. p. 445–449. DOI: 10.1109/IV.2010.68.
  12. Okoń W. Wprowadzenie do dydaktyki ogólnej. Warszawa: Państwowe wydawnictwo naukowe; 1987. 455 s. Russian edition: Okoń W. Vvedenie v obshchuyu didaktiku. Kashkurevich LG, Gorin NG, translators. Moscow: Vysshaya shkola; 1990. 382 p.
  13. Belonogova EA. Simulation, as the main component of visual teaching mathematics engineers-bachelors. Modern High Technologies. 2016;2(part 1):65–69. Russian.
  14. Sokhor AM. Ob’yasnenie v protsesse obucheniya: elementy didakticheskoi kontseptsii [Explanation in the learning process: elements of a didactic concept]. Moscow: Pedagogika; 1988. 128 p. Russian.
  15. Kolyagin YuM. Zadachi v obuchenii matematike [Tasks in teaching mathematics]. Moscow: Prosveshchenie; 1977. 2 parts. Russian.
  16. Naimanov BA. Realizatsiya prikladnoi napravlennosti prepodavaniya differentsial’nykh uravnenii v pedagogicheskom institute [Implementation of the applied orientation of teaching differential equations at the pedagogical institute; dissertation]. Moscow: [s. n.]; 1992. 172 p. Russian.
  17. Kazachenok VV. [Computer functions as a means of organizing controlled self-learning of students]. Informatika i obrazovanie. 2006;10:104–106. Russian.
  18. Kazachenok VV. [Trends and models of education development in the 21st century]. Matjematyka. 2018;5:3–8. Russian.
  19. Simonov VP. Diagnostika stepeni obuchennosti uchashchikhsya [Diagnostics of the degree of training of students]. Moscow: MRA; 1999. 48 p. Russian.
  20. Usova AV. Formirovanie u shkol’nikov nauchnykh ponyatii v protsesse obucheniya [Formation of scientific concepts in schoolchildren in the learning process]. Moscow: Pedagogika; 1986. 176 p. Russian.
  21. Kazachenok VV. Upravlyaemoe samoobuchenie uchashchikhsya resheniyu zadach uglublennogo kursa matematiki sredstvami sovremennykh informatsionnykh tekhnologii [Guided self-study of students in solving problems of an in-depth course of mathematics by means of modern information technologies]. Minsk: Belarusian State University; 2006. 247 p. Russian.
  22. Novikov DA. Statisticheskie metody v pedagogicheskikh issledovaniyakh (tipovye sluchai) [Statistical methods in peda­gogical research (typical cases)]. Moscow: MZ-Press; 2004. 67 p. Russian.
Опубликован
2022-01-04
Ключевые слова: компьютерная наглядность, когнитивная визуализация, обучение математике, информационные технологии
Раздел
Методика и современные образовательные технологии