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B Hacrosiiee Bpemst HoziaBiisiroriee OOIBITMHCTBO HCCIIEIOBATENEH COITACHBI ¢ TEM, YTO MUHUMAaJIbHAsI JTMHA JI0JIK-
Ha MOSIBIISITHCS B BEICOKHX (TJIAHKOBCKUX ) SHEPrHsX. OJJHAKO COBPEMEHHbIE HU3KOIHEPTeTHIECKHUE TEOPHH TP JTAJIEKUX
OT TTAHKOBCKHUX PHEPTHAX (KBAHTOBasi MEXaHUKA, KBAHTOBAs TEOPHS TIOJIS, TPABUTALMS U T. J1.) SIBISIOTCS HETIPEPHIBHBI-
MU, T. €. MUHUMaJIbHas JJIMHA B HUX HyJeBasd. B HacTosmiel cTaTbe NMPEACTABIEH allbTEPHATHBHBII MOAXO0M, B KOTOPOM
TUIIOTETUYECKasl MUHUMAJIbHAS JUITMHA HEHyJeBas Ha BCEX MacITadax sHepruid. opMyIupyroTCsl HOHITUS U3MEPH-
MOCTH U M3MEPUMBIX BEIMUYHMH, B paMKaX KOTOPBIX OTCYTCTBYIOT a0CTPaKTHbIE OECKOHEUHO Mallble MPUPANICHHs Mpo-
CTPaHCTBEHHO-BPEMEHHBIX KOOPJIMHAT. B pe3ynbraTe n3BeCTHbIC HU3KOIHEPTETHYECKHE TEOPUHN (KBAaHTOBAsI TEOPHSI MIIN
rpaBHUTALMS) HEM30EKHO 3aMEHSIOTCS AUCKPETHBIMU TEOPUSIMH, OYeHb OJIM3KUMHU K MEepBOHAYAIBHBIM, HO MMEIOIIIMHU
COBEPILEHHO JIPyTroi MaTeMaTHYECKU anmapar. B aToM cityuae peanbHast AUCKPETHOCTD MPOSIBIISIETCS TOIBKO B BBICOKHX
SHEPTHSIX, OMM3KHX K IUIAHKOBCKUM. AHAJOTHYHOE ([IyaJbHOE) HOHITHE N3MEPHUMOCTH OTIPEEIISETCS] B TEPMOIMHAMIKE
Ha OCHOBE MUHHMAJIBHOI 00paTHO# TeMnepaTypbl. OTMEYEHO, YTO ¢ IIOMOIIBIO BBEACHHBIX (JOPMYIUPOBOK MOXKHO IIO-
JIyYUTh HEKOTOPBIE CIIEACTBUS IS TPABUTALMOHHON TEPMOIMHAMUKH YEPHBIX JbIP Ha BCeX MacmTabax sHepruil. Kpome
9TOTO, MOCTPOCH U3MEPUMBIH BApHAHT OOIIEH TEOPHH OTHOCUTEIBLHOCTH U ITOKAa3aHO, YTO OH IPE/CTABIIET ee qedopma-
0. B o0mem Bujie mpoieMOHCTPUPOBAHO, YTO BCE OCHOBHBIE MHI'PEIUEHTHI 00IIeH TEOPHH OTHOCHTEIEHOCTH UMEIOT
HM3MEPHUMBIE aHAJIOTH.
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MINIMAL QUANTITIES AND MEASURABILITY
CONCEPTION IN QUANTUM THEORY,
GRAVITY AND THERMODYNAMICS

A. E. SHALYT-MARGOLIN*®

*Research Institute for Nuclear Problems, Belarusian State University,
11 Babrujskaja Street, Minsk 220030, Belarus

At the present time the majority of researchers agree that a minimal length is involved at high (Planck’s) energies. But
all the currently used low-energy theories (quantum mechanics and quantum field theory, gravity, etc.) are continuous, i. e.
the minimal length in them is zero. This article presents an alternative approach when the hypothetical minimal length is
nonzero at all the energy scales. By this approach the definition of measurability and of measurable quantities is given,
within the scope of which there is no abstract infinitesimal increment of space-time coordinates. As a result, the initial
low-energy continuous theory (quantum theory or general relativity) inevitably must be replaced by a discrete theory
that gives very close results but operates with absolutely other mathematical apparatus. A real discreteness is exhibited
only at high energies which are close to the Planck energies. A analogous concept (dual) of measurability is defined in
thermodynamics on the basis of a hypothetical minimal inverse temperature. Based on this notions, some implications
are obtained, in particular, for gravitational thermodynamics of black holes at all the energy scales, quantum corrections
of the basic quantities in the general case. Besides, the measurable variant of General Relativity (GR) is constructed and
it is shown that this variant represents its deformation. In the general form it is demonstrated that all the basic ingredients
of GR have their measurable analogs.

Key words: measurability; quantum theory; gravity; thermodynamics.

Introduction

The mathematical apparatus of the present-day fundamental physical theories (Quantum Theory, Special
and General Relativity, etc.) is based on the initial assumption that variations of a physical system are inde-
pendent of the existing energies. Specifically, in the above-mentioned theories the principal mathematical
instruments are the infinitesimal variations (increments) dt, dx;, dp,, dE, i =1, 2, 3. The apparatus based on the
use of these variations comes from mathematical analysis and is completely adequate for classical mechanics,
where continuous space-time forms the base. But in this approach, due to the introduction of ultraviolet and
infrared divergences into a Quantum Theory (QT) [1] and also due to the absence of correct passage to the
high-energy (ultraviolet) region in Gravity (GR) [2], we are facing very serious problems.

The present manuscript is based on the author’s works [3—8]. The main target of this papers is to construct
a correct quantum theory and gravity in terms of the variations (increments) dependent on the existent energies,
1. e., the theory should not involve above infinitesimal variations (increments). By the author’s opinion, these
problems are solvable but beyond the paradigm of continuous space-time.

To solve these problems, in the above-mentioned works, using the minimal length and minimal time, the
author investigates a discrete space-time model, for which at low energies (far from the Planck energies) the re-
sults are to a high accuracy close to those obtained with a continuous space-time model. And at high (Planck’s)
energies the indicated model is fundamentally discrete, leading to principally new results. All variations in any
physical system considered in such a discrete model should be dependent on the existent energies.

The primary instrument for such a discrete model is the measurability notion introduced in [4] and more
precise in [7; 8].

In [5; 6] is demonstrated that a similar measurability notion (in essence dual) may be also introduced in
thermodynamics on the basis of a minimal inverse temperature, leading to very interesting inferences for
thermodynamics of black holes at all the energy scales.

Necessary preliminary information
It is assumed that there is a minimal (universal) unit for measurement of the length ¢ corresponding to some
. hc . . . A .
maximal energy E, = ) and a universal unit for measurement of time T: T= = Without loss of generality, we

can consider ¢ and 7 at Plank’s level, 1. e. / = Klp, T=Ki, where the numerical constant x is on the order of 1,
i.e. E, oo E with the corresponding proportionality factor.
Then we consider a set of all nonzero momenta
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P={p }.i=1,23]p,|#0
and subset (Primarily Measurable Momenta, or PMM)
h
= =—, 1

where N, is an integer number and p, is the momentum corresponding to the coordinate x,.
From these formula it is not unreasonable to propose the following definition.
Definition 1. Primary Measurability. 1.1. Any variation in Ax, for the coordinates x; and A¢ of the time ¢
is considered primarily measurable if
Ax; =N, [, At=N,T, )

where N, # 0 and N,, # 0 are integer numbers.

1.2. Let us define any physical quantity as primary or elementary measurable when its value is consistent
with formulae (1) and (2).

Then we consider formula (2) and definition 1 with the addition of the momenta p, = p, = %, where N,

. . . . . . 0
is an integer number corresponding to the time coordinate (IV,, in formula (2)).

For convenience, we denote Primarily Measurable Quantities satisfying definition 1 in the abbreviated form
as PMQ.
It is clear that PMQ is inadequate for studies of the physical processes. To illustrate, the space-time quantities

T, £

N, Pre oy

. - 3)
- = _ai=192a37

NP

where py, py. are PMM, up to the fundamental constants are coincident with p,, p, . and they may be in-

volved at any stage of the calculations but, evidently, they are not PMQ in the general case.

_ L h K6
Note: fzKlp, lP:GCT’;: C3 .

Thus, it is reasonable to use definition 2.

Definition 2. Generalized Measurability. We define any physical quantity at all energy scales as genera-
lized measurable or, for simplicity, measurable if any of its values may be obtained in terms of PMQ specified
by points 1.1, 1.2 of definition 1.

The main target of the author is to form a quantum theory and gravity only in terms of measurable quantities
(or of PMQ).

Now we consider separately the two cases.

A) Low Energies, E< E .

Domain P, c P (LE is abbreviation of «Low Energies») defined by the conditions

Py={p}. i=12.3 5>

p.|#0,

E .
where P/ = 7/ — maximal momentum.

In this case Primarily Measurable Momenta takes the form

N=T

" opl’
=
pxl_le N€7

|N|>1.

or

As the energies E < E, are low, 1. e. (|Ni| > 1), primary measurable momenta are sufficient to specify the

whole domain of the momenta to a high accuracy P, . Of course, all the calculations of point A) also comply
with the primary measurable momenta p,, . = py, . Because of this, in what follows we understand P, as a set

of the primary measurable momenta Py = Py, (u=0,...,3) with ‘Nu‘ > 1.
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Remark 1. 1t should be noted that, as all the experimentally involved energies E are low, they meet the
condition E « E,, specifically for LHC the maximal energies are =10 TeV = 10* GeV, that is by 15 orders of
magnitude lower than the Planck energy =10'’ GeV. But since the energy E, is on the order of the Planck energy

E, o E , in this case all the numbers », for the corresponding momenta will meet the condition min|M| ~10".

So, all the experimentally involved momenta are considered to be primary measurable momenta, i. e. P, at
low energies £ < E,.
In this way in the proposed paradigm at low energies £ < E, any momentum with Py M= 0,..., 3, takes

the form Py, = Py where N, — integer with the property ‘Nu‘ >1.
Further for the fixed point x, we use the notion p, = p, or Py = Py, -

Naturally, the small variation Apxp at the point P, = Py, of the momentum space P, is represented by the

N,

u

>

primary measurable momentum p,. with the property ‘NV'
e u

The problem is as follows: is any possibility that Ap_ is infinitesimal? For the special point p, = p, the
answer is negative. ' ' "

Indeed, the «nearest» points to p, are p,, _, and p, ..

It is obvious that " " "

pN"u _pN‘u_l‘ - pN. (N —1) ?
‘me_pNx“+1 =Py (N +1)’
| Ny
It is easily seen that the difference r, (v, +1) -\p, (v, for ‘Nx ‘>>1 is infinitesimal, i. e., to within

PNX ( pr_l)‘. And a small variation of ‘Apxu‘ at the point Py, =Py,

a high accuracy, we have =

g y pNXu(N‘u+l)
has a minimum that equals p, (x +1)" Clearly, with an increase in pr » we can obtain no matter how small
pN*’u(N*u+l) '

So, in the proposed paradigm at low energies E < E, a set of the primarily measurable 7, is discrete, and
in every measurement of L =0, ..., 3 there is the discrete subset P c P, :
in

})xpz{"" Pn_—15 Pn.> Pn_+15 }
u u u

In this case, as compared to the canonical quantum theory, in continuous space-time we have the following
substitution:

dp, = Apy =Py = Py =D,

~‘M(N*li+ 1) ’

9 LA oF s AF(pN‘u) _ F(pN«m) - F(mel) F(pzvx“) - F(PNWH) 4)

dp,  Ap, Ip, Ap, Py, = Py p

N"H(N"I‘+ 1)

It is clear that for sufficiently high integer values of ‘Nx , formula (4) reproduces a continuous paradigm in

the momentum space to any preassigned accuracy.
Similarly for sufficiently high integer values of |N,| and N, ..., N_, the quantities Ni’ L may be arbitrary
small. ‘ X,

L. T ! .
, the quantities —, —— are nothing but a measu-

Hence, for sufficiently high integer values of |N ,| and ‘le
t x;

rable analog the infinitesimal quantities dx,, dr, i. . dx,, L =0, ..., 3.
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Thus, for sufficiently high integer values of ‘pr ,u=0,...,3 (which are the primarily measu-

T /!
NN,
rable momenta P. up to fundamental constant) represent a measurable analog of small (and infinitesimal)
space-time increments in the space-time variety M c R,

, we have the following correspondence

Because of this, for sufficiently high integer values of ‘qu

0
dxul—> N—,
¢
Flx+— |- Flx
IS Vil ) B ()
dx, Ay o, Ay, /N,

Now we formulate the principle of correspondence to continuous theory (CCT). At low energies £ < E,
(or same E < E,) the infinitesimal space-time quantities dx,, L =0, ..., 3, and also infinitesimal values of the
momenta dp,, i = 1, 2, 3, and of the energies dF form the basic instruments («construction materials») for any
theory in continuous space-time. Because of this, to construct the measurable variant of such a theory, we
should find the adequate substitutes for these quantities. /

It is obvious that in the first case the substitute is represented by the quantities v where ‘qu

X

— arbitrary

large (but finite!) integer, whereas in the second case by p, = %, i=1,2,3¢, = ]\C]—h, where qu — integer

with the above properties L =0, ..., 3.
N,

X

> 1 are small quan-

In this way in the proposed approach all the primary measurable momenta p, ,

tities at low energies £ < E, and primary measurable momenta p, with sufficiently large ‘Nx
analogous to infinitesimal quantities of a continuous theory. ' '

As, according to Remark 1, all the momenta at low energies £ < E , to a high accuracy, may be considered
to be the primary measurable momenta, we derive that at low energies the primary measurable momenta p N,

> 1 being

— infinitesimal variations.

generate measurable small space-time variations and at sufficiently high ‘Nx“
B) High Energies, E= E .
In this case primary measurable momenta are
h
N=—,
p.t
or

h

P, =Py = N

1

N]=1

where N, is an integer number and p_ is the momentum corresponding to the coordinate x,. Evidently, that pri-
mary measurable momenta in this case are the discrete set.

The main difference of the case B) from the case A) is in the fact that at High Energies the primary mea-
surable momenta are inadequate for theoretical studies at the energy scales £ = E .

This is easily seen when we consider, e. g., the Generalized Uncertainty Principle (GUP), that is an exten-
sion of Heisenberg’s Uncertainty Principle (HUP), to (Planck) high energies [9-11]

Ax > Ai + o/l %, Q)
P

where o’ is a constant on the order of 1.
Obviously, (5) leads to the minimal length ¢ on the order of the Planck length /,

Axp =201 = 1.
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In his earlier works the author, using simple calculations, has demonstrated that for the equality in (5) at
high energies £ =~ E, (E = E,), the primary measurable space quantity Ax= N, /, where N, =1 is an integer

number, results in the momentum p(NAx, GUP) [5; 6]
n

1/2(NM+ R —1)[

It is clear that for N, =1 the momentum Ap(NAx, GUP) is not a primary measurable momentum.

Ap = p(N,,, GUP) =

On the contrary, at low energies £ < E, (E < E,), the primary measurable space quantity Ax=N, /,
where N, >>1 is an integer number, due to the validity of the limit

lim (N. -1=N,,,

Ny, = oo

leads to the momentum Ap(N GUP):

Ax®

Ap=Ap(N,,, HUP) = L f L

b HUP) 1/2(NAX+,/NAZX—1)€ SN AX

It is inferred that, for sufficiently high integer values of N, . the momentum Ap (NAX, H UP) within any high

accuracy may be considered to be the primary measurable momentum. This example illustrates that primary
measurable momenta are insufficient for studies in the high-energy domain £'~ £, and we should use the gene-
ralized measurable momenta.

As noted above, the main target of the author is to construct a quantum theory at all energy scales in terms
of measurable quantities.

Remark 2. As long as ¢ is a minimal measurable length and 7 is a minimal measurable time, values of all
observable quantities should agree with this condition, i. e. their expressions should not involve the lengths

. . l .
[ < ¢ and the times ¢ < T. Because of this, values of the length — and of the time L from formula (3) couldnot
appear in expressions for observable quantities being involved only in intermediate calculations, especially at
thesummation for replacement of the infinitesimal quantities dx,, df on passage from a continuous theory to
itsmeasurable variant.
We can assume that at low energies £ < E|, all the observable quantities are PMQ.

Space-time metrics in measurable format

according to the above-mentioned results, the measurable variant of gravity should be formulated in terms

of the small measurable space-time quantities or same primary measurable momenta p,, .
s

Ax,

Let us consider the case of the random metric g, = guv(x) where x e R* is some point of the four-di-

mensional space R* defined in measurable terms. The phrase «some point of the four-dimensional space R*
defined in measurable terms» means that all variations at the indicated point are determined in terms of measu-

rable quantities. Specifically, as mentioned above, all small measurable variations take the from % Dy s

Axy

where p, are primary measurable momenta and ‘NAX ‘ > 1.
‘Axy n
Now, any such point x € {xx} € R*and any set of integer numbers {N [ } dependent on the point {x"} with

> 1 may be correlated to the bundle with the base R* as follows:

B, = {xx, Ng } - {xth (6)

the property |N [

Itis clear that lim B, =R"
N

AxX
—> oo
Axk

Then as a canonically measurable prototype of the infinitesimal space-time interval square [2]
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ds*(x) = g, (x) dx"dx’
we take the expression
EZ
AS{ZN X}(x)zg},w ()C, ZVAXX)N—' (7)

ax Axt NAxV

Here g, (x, NM) — metric with the property that minimal measurable variation of metric g, (x NM) in

point (7) for coordinate %™ has form
Agw (x, NAxx )x =gu|x+ L, NAX% - 8w (x NAx%)
N,
Let us denote by A, g,,, (x, N, . ) quantity

Agy (v N, ),
(/N '

Ax*

Axgw(x NM)

It is obvious that in the case under study the quantity Ag,, (x, N, . )x is a measurable analog for the infinitesimal

increment dg,,, ( x) of the " component (a’gllv (x))x in a continuous theory, whereas the quantity A, g, (x N, . )
is a measurable analog of the partial derivative d, g,, (x)

In this manner we obtain the formula (6) induced bundle over the metric manifold gw(x):

Bg’ N = Euv (X NAr" ) = gpv(x)'

as follows:

The formula (7) may be written in terms of the primary measurable momenta ( Py » Py, ) = py

4

!

2

ASNM(x) =7 (x N, ., ) NPy

Considering that £ oo [, (i. e. / = k/,), where k = const is on the order of 1, in the general case to within the

4
constant ? we have

Aszzvm(x) = 8w (x Ny )pNMupNAxV'

As follows from the previous formulae, the measurable variant of General Relativity should be defined in
the bundle B,

Measurable form of Einstein equations
at low energies and transition to high energies

Thus, we have measurable (discrete) analogs infinitesimal variations and partial derivative:
dg,, (x) —Ag,, (x N, . ) axgw (x) —A g, (x N, . )

In particular, the Christoffel symbols
o 1 o
1—‘},lv(x) = Eg B(x)(avg[w(x) + augv[i (x) - aBguv(x))

have the measurable analog
1
— p
Ty (x, Nxx) = Eg“ (x, Nxx)(AvgBu(x, Nxx) +A,84 (x N, ) Apg,y (x N, )) (8)
Similarly, for the Riemann tensor in a continuous theory we have:

Ry (x) = 0,105 (x) = 9T (%) + Ty () T (x) = T () T (x).
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vo

With the use of formula (8), we can get the corresponding measurable analog, i. €. the quantity R* (x, Nxx )

In a similar way we can obtain the measurable variant of Ricci tensor, Rw(x, N, ) =Rl (x, N, ), and the
measurable variant of Ricci scalar: ' ’

R(x, N, ) ERHV(X, N, ) g (x, N, )

So, for the Einstein Equations (EE) in a continuous theory

1 1
Ruv - E gpv - E gp.v = STCGTLW (9)
we can derive their measurable analog, for short denoted as Einstein Equations Measurable (EEM):
1 1
Ry(% N, ) - ER(x, N, )gu(% N, ) - EA(x, N, )gu(x. N, )=87GT,(x. N, ). (10)

where G — Newton’s gravitational constant.

For correspondence with a continuous theory, the following passage to the limit must take place for all the
points x:
lim A(x,N, |=A,

[ >
where the cosmological constant A is taken from formula (9).
N,

Moreover, for high , the quantity A(x, N, ) should be practically independent of the point x, and we
have '
A(x, Nxx)zA(x’, Ny )= A, (11)

where x # x” and >1.

N,

Actually, it is clear that formula (11) reflects the fact that (EEM) given by formula represents deformation
of the Einstein equations (EE) in the sense of the definition given Ludwig Faddeev in 1989 [12] with the defor-
mation parameter N, , and we have

>1, ‘Nx',
x

lim (EEM)= (EE).

N[>
We denote this deformation as (EEM )|:Nxx ] Since at low energies E < E, and to within the known constants

we have NL = py,_, the following deformations of (EU) are equivalent to
(EEM)[ N, |= (EEM)[ple ]
So, on passage from (EE) to the measurable deformation (EEM )[ N, :| (or identically (EEM )[ Py :|) we

can find solutions for the gravitational equations on the metric bundle B, N, = [ 8 (x, N, ):|

- : . l
However, minimal measurable increments for the energies £ = E, are not of the form —— because the

X

corresponding momenta { Py } are no longer primary measurable, as indicated by the results in «Necessary
%

Preliminary Information.
So, in the proposed paradigm the problem of the ultraviolet generalization of the low-energy measurable

gravity (EEM )|:N ] is actually reduced to the problem: what becomes with the primary measurable momenta

{pNxX }

Information» we have the answer.
In more general case [12]

Nxx ‘ >1 at high (Planck’s) energies. In a relatively simple case of GUP in «Necessary Preliminary

AxAp > (n1+B(ap)'), (12)
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Ax,= 2B =,
when (12) is equality, Ap = p,, — generalized measurable

2

lH(pNM“ ) = _pNA'Y )

~1,
h n

Py
Ax

m

Asy (x, q)iguv(x’ N, q)lH(pNM")IH (pN“” )i
4

= renle N a) oy s [N

Xy

~1,

‘Nr ‘:lﬁ‘NX ‘>>I
x x

= 1) = Py, (‘ Nxx

Px, ( N, > 1).

ilp - [,

A8 (x, N, , q)x = 8 (x +1y (pNxX ) N, q)—gw (x,Nxx, q),

‘NY ‘zl—)‘Nx ‘>>1
X X

zl) = L, (
N,

le > 1).

A8 (x, N, q)x
Iy (pNxX )

EEM[q]=R,, (x, N, q) = %R(x, N, q)gw(xa N, q) -

Ax,qgw(x, Ny, q) =

— %A(x, Nxx’ q)gle (x, Nxx’ q) = STEGTHV(x, Nxx’ q). (13)

EEEMEEM[(]] = EEM, or lim EEM[q] = EEM.

‘N‘x‘»l

Gravitational thermodynamics
in measurable form and black holes

In the works [5; 6] it was shown that the concept of measurability (dual) can be introduced in thermody-
namics based on the minimum inverse temperature. Then the following formula for minimal unit of the inverse
temperature 7:

1 - o
— = N,;T, N,,; >01s an integer number,

is the analog of the primary measurability notion into thermodynamics. Similarly, generalized measurability in
thermodynamics is introduced as in definition 2.

Now let us show the applicability this results to a quantum theory of black holes. Consider the case of
Schwarzschild’s black hole.

It should be noted that such spaces and even considerably more general cases have been thoroughly studied
from the viewpoint of gravitational thermodynamics in works of professor T. Padmanabhan (for example in [13]).

The case of a static spherically-symmetric horizon in space-time is considered, the horizon being described
by the metric

ds* = —f(r)cza’t2 + fﬁl(r)dr2 + r2dQ*

The horizon location will be given by a simple zero of the function f (r), at the radius r = a.
Then at the horizon » = a Einstein’s field equations
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"54[% f'(a)a- ﬂ = 4nPd’, (14)

where P =T is the trace of the momentum-energy tensor and radial pressure. Therewith, the condition f (a) =0
and f’(a)# 0 must be fulfilled.

On the other hand it is known that for horizon spaces one can introduce the temperature that can be identi-
fied with an analytic continuation to imaginary time. In the case under consideration
hef'(a
kB T = f—() (15)
4T
It is shown that in the initial (continuous) theory the Einstein equation for horizon spaces in the differential
form may be written as a thermodynamic identity (the first principle of thermodynamics)

h ’ 3 4

hefla) < d(l4na2) Lcda_ Pd(4—na3), (16)
4t Gh \4 2 G 3

—— e
kgT ds —dE PV

where, as noted above, 7 — temperature of the horizon surface; S — corresponding entropy; £ — internal energy;
V' — space volume.

It is impossible to use (16) in the formalism under consideration because, as follows from the given results
da, dS, dE, dV are not measurable quantities.

First, we assume that at low energies E < E,, a value of the radius r at the point a is a primarily measurable
quantity in the sense of definition 1 1. e. a=a,,, = N,{, where N, > 1— integer, and the temperature 7 from the
left-hand side of (15) is the primarily measurable measurability temperature.

Then, in terms of measurable quantities, first we can rewrite (14) as

2wk, T 1
C_ n B ameas - A = 4npaieas‘ (17)
G hic 2

. : 1 .
= N,/ in terms of the deformation parameter o, = — and the temperature 7 is ex-

a

We express a = a

meas

E
pressed in terms of 7, oo T = k—p. Then equation (17) may be given as [6]
B

4 2rE 4
il Biniesi’ ZQIH/Z_laa . ocla/z—loca = 4nPr. (18)
G| Nyhe” 2 G| Nyr 2

However (18) are Einstein’s equations in low energies at low energies E < E,,. In this equation, the following
substitution occurs upon transition to high energies E = E:

1
N, = S (N N1 Ny = (V4 V2 1), (19)

where N, = 1, N, , = | are integer numbers.

Then the equation (18) and the corresponding high-energy equation obtained from it by replacement (19)
will be a special case of the general formulae (10), (13). Besides, in terms of measurable quantities and formu-
lae some important implications for gravitational thermodynamics of black holes [14] at all the energy scales
have been suggested [6; 7].

It should be noted that currently a lot of works on the theory with a minimum length are published (for exam-
ple [10; 11; 15] and so on). The proposed approach differs from all the others in that we use space-time and
momentum variations depending on the available energies instead of abstract quantities dx,,, dp,, dE.
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