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We analyse the physical meaning of quantum phase effects for point-like charges and electric (magnetic) dipoles in
an electromagnetic (EM) field. At present, there are known eight effects of such a kind: four of them (the magnetic and
electric Aharonov — Bohm phases for electrons, the Aharonov — Casher phase for a movmg magnetic dipole and the
He — McKellar — Wilkens phase for a moving electric dipole) had been disclosed in 20" century, while four new quantum
phases had recently been found by our team (A. L. Kholmetskii, O. V. Missevitch, T. Yarman). In our analysis of physical
meaning of these phases, we adopt that a quantum phase for a dipole represents a superposition of quantum phases for
each charge, composing the dipole. In this way, we demonstrate the failure of the Schrédinger equation for a charged
particle in an EM field to describe new quantum phase effects, when the standard definition of the momentum operator is
used. We further show that a consistent description of quantum phase effects for moving particles is achieved under appro-
priate re-definition of this operator, where the canonical momentum of particle in EM field is replaced by the interactional
EM field momentum. Some implications of this result are discussed.

Keywords: quantum phase effects; electric dipole; magnetic dipole; Schrodinger equation; operator of momentum.

Introduction

As is well-known, at the middle of 20™ century, Aharonov and Bohm predicted two quantum phase effects
for electrons in an electromagnetic (EM) field [1; 2]: the electric Aharonov — Bohm (AB) effect with the phase

8y=—Jod (1)
and the magnetic Aharonov — Bohm (AB) effect with the phase

e
8A=—%J‘A-ds. )

Here ¢, A are respectively scalar and vector potentials, ds = vdt is the path element of a charge e along
a line L, ¢ is the light velocity in vacuum, and 7 is the reduced Planck constant.

Later, in the 1980s, the Aharonov — Casher (AC) phase for a moving magnetic dipole m in the presence of
electric field E had been found [3]:

1
8, = %j(m X E)- ds, 3)

and in the 1990s, the He — McKellar — Wilkens (HMW) phase for a magnetic dipole p, moving in magnetic
field B, had been disclosed, too [4; 5]:

d,p="— (p % B)- ds. 4)

hc

It is important to emphasize that the quantum phase effects (2)—(4) have been confirmed in corresponding
experiments (e. g., [6—8]). The electric AB phase still was not directly observed, because the available attempts
(see, e. g., [9]) were failed to reliably distinguish the electric AB phase (1) from the dynamical effects resulting
due to non-vanishing electric component of the Lorentz force. Nevertheless, there are no doubts with respect
to the reality of the electric AB phase (1), insofar as it directly derived, along with the magnetic AB phase (2),
from the Schrodinger equation for a charged particle in an EM field, where the standard Hamiltonian

R (—th—eA)
A=~ "7

2m

+ e (5)
is used (see, e. g., [10]).
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A validity of this assertion follows from the common definition of quantum phase for charged particle in
the presence of EM field,

1
B:EHH—HUm, (6)

where H|, stands for the Hamiltonian of particle in the absence of EM field. Therefore, combining equations (5)
and (6), we obtain

8:%Je(pdt—%jeA - ds.

Thus, one can see that the first term on the right side describes the electric AB phase, while the second term
corresponds to the magnetic AB phase.

Addressing now to equations (3), (4) for quantum phases for dipoles, we emphasize that both of them had
been derived with some approximate Lagrangian expressions either for magnetic [3], or electric [4; 5] dipoles,
which, in general, leave unanswered question about a possible existence of more quantum phase effects for
moving dipoles.

We addressed the problem of deriving a covariant expression for the Lagrangian of electric/magnetic di-
pole, solving another task: to explore the origin of the high-temperature Kondo effect (the inverse dependence
of the resistivity on the temperature for conducting materials [11]), which we experimentally revealed in
iron-containing high-temperature superconductors [12; 13], and which supposedly could be explained via the
interaction of magnetic dipole moments of conduction electrons with the magnetic dipole moments of impuri-
ties in superconductors [11]. Thus, in order to understand the manifestation of Kondo effects for our samples
under investigation, we needed to use the force law for two interacting magnetic dipoles and, surprisingly, we
did not find an unambiguous solution of this problem in the available literature.

Thus, in our own attempts to solve the problem, we obtained for the first time the relativistically invariant
expression for the Lagrangian of electric (magnetic) dipole, and this result suggested us to look closer not only
at the problem of high-temperature superconductivity, as exposed in references [12; 13], but also at the prob-
lem of quantum phase effects for moving dipoles and to derive the general expression for their total quantum
phase (see section «Force law in material media via covariant Lagrangian and quantum phases for electric
(magnetic) dipoles»).

In section «Physical meaning of quantum phases for electric (magnetic) dipoles and new quantum phases for
point-like charges», we seek the physical meaning of quantum phases for dipoles as the superposition of quantum
phases for electric charges composing the dipoles. In this way, we derive two novel quantum phase effects for
point-like charges, which we named as the complementary magnetic and electric AB phases, correspondingly.

In section «Quantum phase effects for freely moving charges in an EM field and re-definition of the opera-
tor of momentumy, we discuss the physical meaning of quantum phase effects for charges and dipoles, and
show that their consistent description requires to re-define the momentum operator for charged particle via the
sum of mechanical and EM momenta (41), instead of the old definition via the canonical momentum of the par-
ticle (36). In this way, we provide a clear physical interpretation of quantum phase effects for charged particle
which indicates that even at its constant mechanical momentum (no force on the particle), the variation of its
de Broglie wavelength happens entirely due to corresponding variation of interactional field momentum. Other
important implications of the new definition of momentum operator (41) are also discussed.

Force law in material media via covariant Lagrangian
and quantum phases for electric (magnetic) dipoles

During many decades, the problem of determination of a correct force law in material media was definitely
underestimated by many researchers. In fact, it was tacitly supposed that the Lorentz force law, being well
tested for point-like charged particles, can straightforwardly be extended to bound charges in material medium,
which for a unit volume of such a medium takes the form (see, e. g., [14])

J.=PE+jxB, (7
where f is the force density,
p=-V-P (®)
is the charge density, and
oP
j=VXM+— 9
J o )

is the current density; P being the polarization, and M being the magnetization.

52



®u3HKa YIEeKTPOMATHUTHBIX SIBJIEHHIH
Physics of Electromagnetic Phenomena

However, equation (7) is, as minimum, incomplete, because it does not include the force density compo-
nents, resulting from the secondary effects in material media, e. g.: its polarization, the emergence of mecha-
nical stresses, etc.

In the second half of 20" century, it was proposed to describe the contribution of such secondary effects via
introducing the hidden momentum of magnetic dipole (see, . g., [15-17])

thém x E, (10)

and the time variation of the density of hidden momentum (10) yields one more component of force, acting per
unit volume of a magnetized material medium:

1d
=——(M x E).
fi= o (M % E) (11)

Hence, it was adopted that the total force density on a material medium should be defined as the sum of the
Lorentz components (7) and hidden momentum contribution (11).

However, we have shown in references [18; 19] that the sum f; + f, is not Lorentz invariant, that leads to
relativistically non-adequate results with respect to the force on electric (magnetic) dipoles as is seen by dif-
ferent inertial observers.

Thus, in order to find the correct relativistic expression for the force on a dipole, we suggested in referen-
ces [18; 19] to apply an explicitly covariant expression for the Lagrangian density of a polarized or magnetized
medium in an EM field [20] 1

o= M P Fo, (12)

where M is the magnetization-polarization tensor and /' P is the tensor of EM field [14].
Integrating equation (12) over the volume of compact dipole, and introducing the rest mass M of the dipole,

we obtain the total Lagrangian as follows:
2

M
Lz—Tc+p-E+m-B. (13)
Substituting the Lagrangian (13) into the Euler — Lagrange equation at the given fields E and B, i. e.,
L _daL
or dtov’
we arrive at the relativistic expression for the total force on the dipole [18; 19]
Po- E)v
F=9(M0)=V(p-E)+V(m B) + iw ¥
dt dt c

d Y(mon : B)V dl
b ——
dt c? dt €

where the subscript 0 stands for the proper electric and magnetic dipole moments.

dl
(pO X B)—Ez(mo X E),

. . . oL S -
Next, we straightforwardly define the Hamilton function H = — - v — L, which, in the quantum limit, de-
v

termines the Hamiltonian A and the total phase for a dipole in the presence of EM field [18; 19]:
¢~ 1 1
d=—|Hdt=—— -Elv-ds——|y(my - -B)v-ds+
hf hczjy(l’ou ) thJy( o°B)

+ %J-(mo x E)-ds—%_,‘(po X B)- ds—%j(p : E)dt—%.[(m - B)dt. (14)

In what follows, we will consider the quantum phases for moving dipoles only, which allows us to exclude
from further analysis the last two terms on the right side of equation (14), which respectively determine the
Stark phase [21] and Zeeman phase [22], available for resting dipoles.

As is further shown in references [18; 19], in the weak relativistic limit, corresponding to the accuracy of
calculations ¢, the sum of remaining four terms in equation (14) can be written as

1 1 1 1
Sz—%J(pr)-ds—EJ‘(p-E)v~ds—ﬁj(m'3)v'ds+%j(mXE)'dSa (15)

where all quantities are evaluated in a laboratory frame.
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The first and the last terms on the right side of equation (15) stand respectively for the known HMW (4)
and AC (3) phases, while the second and third terms correspond to the quantum phases previously unknown,
which emerge under the motion of electric dipole in electric field

1

SpEZ_? (p-E)v-ds, (16)
and under the motion of magnetic dipole in magnetic field
8,5 = —% (m - B)v - ds. (17)
he

By such a way, we have obtained four quantum phases 6z, 8,5, 8,z 6,5 for moving dipoles, defined by
equations (3), (4), (16) and (17), correspondingly, and the subsequent problem is to disclose their physical
meaning. We will solve this problem in section «Physical meaning of quantum phases for electric (magnetic)
dipoles and new quantum phases for point-like charges» on the basis of a natural assumption that a quantum
phase for a dipole represents a superposition of quantum phases for each charge, composing the dipole.

Physical meaning of quantum phases for electric (magnetic) dipoles
and new quantum phases for point-like charges

In order to explore the relationship between quantum phases for charges and dipoles, we first of all point
out that the fundamental AB phases in equations (1), (2) for point-like charges are defined via the EM field
potentials and hence, we have to express the phases for dipoles (3), (4), (16), (17) through the EM field poten-
tials, too.

Below, we solve this problem subsequently for each quantum phase of dipole. We will analyse the obtained
expressions for the phases 8 5, 6, with the standard model for electric dipole — two point-like charges +e and —e,
connected to each other via a rigid rod of a small distance d. Correspondingly, we will analyse the obtained
expressions for the phases 9,,z, 9,5 using the standard model for magnetic dipole — an electrically neutral small
conducting loop carrying a steady current with the density j.

He — McKellar — Wilkens phase Sp 5 (equation (4)). This phase depends on the magnetic field B, and it can
be expressed via the vector potential 4 in the following way:

d,p = —%J(p X B)-ds=
1 1 1
- _%JJ(P x B) - dsdV = —%JJ(P x (V x A))-dst=%£i[pA-dst. (18)

In the derivation of this equation, we have used the equality V x A = B, the definition p = JPd V (where P

being the polarization, and V is the volume of the dipole), as well as the vector identity [23]

[(4-P)as - [P(4-ds)-[A(P - dS)=

=[Ax(Vx P)aV+[Px(Vx A)dV - [A(V-P)aV - [P(V- A)dV,

further on, we used the fact that the polarization P is vanishing on the surface S of dipole, so that all integrals
on the left side are equal to zero. Finally, we have used equation (8) and the equality V X P =0 in the Coulomb
gauge (V- A4=0).

Thus, applying equation (18) to the model of electric dipole specified above, we obtain

8p3=% $A(r+a) ds—A(r)-ds |, (19)
L, L

where the path of the positive charge of dipole is designated as L., the path of the negative charge of dipole is
designated as L_, and r is the radial coordinate.

Equation (19) shows that the HMW phase 6, represents an algebraic sum of magnetic AB phases (2) for
each charge, composing the dipole, and this result has already been derived in reference [24] soon after the
discovery of the HMW phase.
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At the same time, on can easily realize that the magnetic AB phase (2) cannot be responsible for other quan-
tum phase effects derived for moving dipoles. What is more, one should notice that the second fundamental
quantum phase for point-like charges — the electric AB phase (2) — does not explicitly contain the velocity of
charge, and cannot be responsible for the origin of the remaining quantum phases 8,,, 8, 8,5, for moving
dipoles.

This circumstance makes rather interesting the problem of determination of their physical meaning, and
next we consider one more quantum phase 8, for a moving electric dipole.

The phase 6, (equation (16)). This phase depends on the electric field E, and we assume that it does not

contain the inductive component (i. e., a— =0). Then, using the equality E = -V @, the definition p = IPdV, as
well as the equation (8), we obtain v

o= [(p- E)s-ds = [ (P Vo). dsay =
4
1 . 1
=EJ§'§V' (Po)v- dsdV - Figﬁpcpv . dsdV = ‘Eﬁ"‘” - dsdV. 0)

In the derivation of this equation, we also have used the vector identity V- (P@)=¢V - P + P -V, and

have taken into account that the volume integral _[Cj)V -(P@)v - dsdV can be transformed into a surface inte-

4
gral via the Gauss theorem, where the polarisation P is vanishing.
We further see that for the model of the electric dipole adopted above equation (20) takes the form

1 e e
8, = —ﬁigp(pv ~dsdV = —ﬁi';(p(r +d)v-ds + ﬁLJ;(p(r)v - ds.

This equation indicates that the quantum phase 8, for electric dipole represents a superposition of new
quantum phases for point-like charges composing the dipole, which is defined by the equality

8., =———[ov-ds. 21

=259 (21)
One can see that in the weak relativistic limit, the phase (21) is smaller than the electric AB phase (1) by
2

(%}) times, and in references [25; 26] we named it as a complementary electric AB phase, supplying it with

the subscript c.
Aharonov — Casher phase J, . (equation (3)). This phase depends on the electric field E, and we again
assume that it does not contain the inductive component. Then, using the equality E = -V, as well as the de-

finition m = J-Md V, we obtain

8,5 = —i;/”(M X Vo) - dsdV =
1 1 1
:%JJV X (M) - dsdV — %chp(v X M)- dsdV = —%Jgg(p(v x M) dsdV. (22)

Here, we have used the vector identity V x (M@)=¢V X M — M x V¢ and taken into account that the
volume integral HSV X (M@®)- dsdV can be transformed into a surface integral, where the magnetisation M

is vanishing.
For further transformation of integral (22), we apply the equality (9) and assume a stationary polarisation,

where %—I; =—(v-V)P. Hence, we derive
1 .
SmE:——hcz I_[(j)(p(] +(v-V)P)'dst. (23)

For the adopted model of magnetic dipole — an electrically neutral current loop with a steady current —
the proper polarisation is equal to zero. Therefore, the polarisation P in equation (23) can emerge for a moving
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M
dipole only, and equal to P =v X TO' Hence, one sees that it is orthogonal to the vector ds, and equation (23)
yields

8m5=—hl7£4‘><pj~ dst=—$;[qS(ppu~dst, (24)

where we have used the equality j = pu.

Thus, the obtained expression (24) for the AC phase via the scalar potential ¢ indicates that this phase rep-
resents the superposition of complementary electric AB phases (21) for all charged, composing the magnetic
dipole.

More specifically, the positive charges of the frame of the loop (which rest in its proper frame), contribute
to the total phase for a moving magnetic dipole at the value

1
(SmE )positive = _Wj.é(pp+v : deVa (25)
v
whereas the negative charged (the carries of current) contribute at the value
1
(8’”5 )negative = _WJ‘¢(W)7 (u + V) -dsdV. (26)
v

Summing up equations (25) and (26) at p, =—p_, we arrive at the phase (24).

Thus, we reveal that the AC phase for a moving magnetic dipole (3) represents the superposition of com-
plementary electric AB phases (21) for all charges of the dipole.

The phase 3, (equation (17)). In order to express this phase via the vector potential 4, we will use the

equality B =V X A4 along with the definition m = JMdV and the vector identity V - (M X A) =M - (V X A) +
A- (V XM ) Hence, we derive from equation (17):

3,5 = J.Cﬁ VXA v dst——J.Cﬁ MXA))v~dst—
__H> (Vx M)) dst———ng (VX M))v - dsdV, 27

where we have taken into account that the first integral on the right side of equation (27) is vanishing due to
the Gauss theorem. In order to evaluate the remaining integral, we involve the equality (9) and assume again

that the polarisation is stationary, i. e. ap = B_P + (v : V)P =0, and 8_P = —(v . V)P. Hence, combining equa-
dt ot ot
tions (9) and (27), one gets
1
O s=——||(A-j+A-(v-V)P)v-dsdV. 28
=3 J(A 7+ 4 (- V)P) (28)

The second integral in equation (28) can be transformed to the form:
d dA
dsdV = V)PWVdtdV =v* | |—(A- P)dtdV —v* ( -—jdt.
” v g ” (v )) v{-/”dt( ) vjp dt

Therefore, it is vanishing under adoption of the natural conditions A(¢=0)= A(¢=e0)=0. Hence, equa-
tion (28) yields

8, = —%Jj(j - A)v - dsdV = —hl?;”-(pu - A)v - dsdV, (29)

where we have used the equality j = pu.
Applying equation (29) to the adopted model of a magnetic dipole, we can write by analogy with equa-
tions (25) and (26):

(SmE positive = j¢p+ V A - dsdV,

(8, )negaﬁve = —W'[Cf)(pp_((u +v)- A)(u +v)- dsdV.
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These equations show that the phase §,,; for a moving magnetic dipole represents a superposition of new
quantum phases for point-like charges of the dipole, being defined by the equality

e
8, = _h_éj(v - A)v - ds, (30)
which we named as the complementary magnetic AB phase [25; 26]. It is seen that this phase is approximately
2
by (g] times smaller than the magnetic AB phase (2).

Thus, all quantum phases 9z, 8,5, 8,5, 9,5 for an electric or magnetic dipole moving in EM field origi-
nate from three fundamental phases for point-like charges: the magnetic AB phase 9, (2), the complementary
electric AB phase 8, (21), as well as the complementary magnetic AB phase J,, (30). A relationship between
fundamental velocity-dependent quantum phase effects for point-like charges and phase effects for electric
(magnetic) dipoles is shown in figure, which illustrates their physical meaning.

M tic AB Complementa C 1 t
agnehc p v omp . ementaty Fundamental phases
phase d, electric phase 6, magnetic phase J_,
HMW phase 3, AC phase §,, Phase 6, Phase §,, Derivative phases

Relationship between velocity-dependent quantum phases
for charged particles and for moving dipoles

We found above that the ratio of complementary electric AB phase (21) and electric AB phase (1) has the
2
order of (%}) , and the same result is valid with respect to the ratio of complementary magnetic AB phase (30)

and magnetic AB phase (2). This observation led us to assume in reference [25] that the phases 8, 6., could
represent some relativistic extension of the fundamental electric and magnetic AB phases, correspondingly.

However, later we pointed out [26] that the Schrodinger equation for charged particle in an EM field does
already contain the terms of order ¢ *. Nevertheless, it does not include the complementary electric AB phase
8., of the same order. This already signifies that the actual situation with respect to physical interpretation of
the new quantum phases 8., 8., is more complicated, and this problem is analysed in the next section.

Quantum phase effects for freely moving charges
in an EM field and re-definition of the operator of momentum

The results, which we obtained above, indicate that a moving point-like charge in the presence of EM field
is characterised by three quantum phases: the previously known magnetic AB phase (2), as well as the comple-
mentary electric (21) and magnetic (30) AB phases, disclosed via the analysis of quantum phases for moving
dipoles [18; 19; 25; 26]. Therefore, the determination of physical meaning of these phase effects acquires the
fundamental importance.

Analysing this problem, we assume that all quantum phase effects for a moving charge should be directly
related to its wave vector k and de Broglie wavelength A, which can depend not only on the mechanical mo-
mentum of the particle P, but also on the EM momentum P, for a system «charged particle plus external EM
field». This assumption suggests us to generalise the wave vector in the form

P,+ P
P ( M T Ty ), (31)
h
with the corresponding de Broglie wavelength
A= L (32)
|Py + Py,

Hence, the corresponding quantum phase dd along the path ds is equal to
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(P + Py ) ds
e

In order to verify this assumption, we address to reference [26], where we calculated the interaction EM
field momentum for a spinless charged particle in the external E, B fields as the function of scalar ¢ and vector
A potentials:

dd=—k - ds=— (33)

1 1 ed vep ev(A-v)
P.,=—|(EXB)dV+—|(E, XB)dV=—+—+ ————F, 34
= g (B X B4V (B v = M0 34
here E,, B, are the electric and magnetic fields of a moving charge.

Thus, combining equations (33), (34), and integrating over the path s, we obtain the total phase of charged

particle, moving in EM field:
_ _ 1 e e e
6 =—k-ds= _%JPM - ds — %J‘A - ds — gj‘([)v - ds — gJ‘V(A . V) - ds. (35)

The first term on the right side of this equation describes the phase of particle, associated with its mecha-
nical momentum, which exists in the absence of EM field, while the remaining three terms stand for the mag-
netic AB phase (2), the complementary electric AB phase (21) and complementary magnetic AB phase (30),
correspondingly. This result fully validates our assumptions ((31), (32)) with respect to the dependence of the
wave vector k and the de Broglie wavelength A on the scalar and vector potentials.

At the same time, one should notice that in no way the phase (35) can be derived via the Schrodinger equa-
tion with the standard Hamiltonian (5) for charged particle in an EM field. As we have already shown in the
introductory section, the Hamiltonian (5), being substituted into equation (6) for the total phase of particle,
yields only the magnetic AB effect for velocity-dependent phase, leaving non-accounted the complementary
magnetic and electric AB phases.

This contradictory situation, disclosed at the first time in reference [26], suggested us to look closer at the
adopted procedure of transition from the classical to quantum description of charged particles. On this way, we
concluded [26; 27] that the failure of the Hamiltonian (5) to describe the complementary electric and comple-
mentary magnetic AB phases, playing important role in the physical interpretation of a full set of quantum phases
for charges and dipoles, definitely indicates the presence of a fundamental inconsistency in quantum description
of charged particles in an EM field.

According to our analysis [26; 27], such an inconsistency is present in the definition of the momentum
operator for charged particle in EM field, which is commonly associated with its canonical momentum, i. e.,

A4~
P=P,+C 5P =—inV. (36)

Hence, equation (36) straightforwardly yields the Hamiltonian (5).

In fact, the postulate (36) tacitly prescribes the fundamental role to the canonical momentum of charged
particle in quantum mechanics, which, however, looks not so obvious. Thus, one can wonder, why the phy-
sical context of equation (36) was, to the best of our knowledge, not discussed earlier, before our publica-
tions [26; 27].

As is known, the canonical momentum (36) for a charged particle in an EM field emerges as a formal
variable in the Euler — Lagrange equation of classical electrodynamics (see, e. g., [28]), and a question about
a physical meaning of P, even was not discussed.

A
We separately investigated this problem in reference [26] and found that the term eT describes the inter-

action EM field momentum for the system «charged particle in an external electric and magnetic fields» in the
particular case of zero velocity of particle.

Indeed, for a charged particle at rest, its magnetic field is equal to zero, so that the interactional field mo-
mentum takes the form

Py (v= 0):4+CCJ.(E6 X B)dV = %MJ(E x (V x A))dv, 37)
14

where we have used the equality B = (V X A). Further, we involve the vector identity [23]
J.(Ee x (V x A))dV + J(A x (VX E,))dV - _[(Ee(V - A))dv - _[(A(V -E,))dV =0,
v v v

v
which in the Coulomb gauge (V- 4 =0) yields
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eA
J(E,x (VxA)av=-[(Ax(Vx E,))aV + 4r[(p,A)dV = =. (38)
4 v 4
Here we have taken into account that V x E, = 0 for a resting particle, and used the Maxwell equation
V- E,=4np, p,being the charge density of the particle. Hence, using equations (37) and (38), we obtain

eA

Poyy (v=0)=% (39)
Further on, combining equations (36) and (39), we arrive at the equality
P.=P,(v)+ Py, (v=0)— P =—inV, (40)

which shows that the canonical momentum represents the sum of mechanical momentum of moving particle
P,, and the interactional EM field momentum Py, in the situation, where the particle would be at rest in the
frame of observation. Thus, equation (40) indicates that the canonical momentum P, does not have a real phy-
sical meaning.

Under this circumstance, it seems attractive to re-define the momentum operator in such a way, where the
sum of mechanical momentum and interactional EM field momentum are taken at the same velocity v of the
charge, i. e.,

P, (v)+ Py, (v) > P=—inV. (41)
Hence, instead of the Hamiltonian (5), we get

o (—ihV — Puy )2

== 4 e,
2M
or, in the explicit form (see equation (34)),
2
1 eA vep ev(A-v)
H=—|P——-—————21 +e0, 42
ZM( ¢ 2 c ? 42

where all variables are considered as operators.
Presenting in equation (42) P = Mv and assuming the Coulomb gauge, where the operators v and 4 commu-
tate with each other, we derive to the accuracy of calculations ¢ :

n’ ed-v eV’ evz(A . v)
H=——A+ep - - - , 43
2M T c? ¢ +)
2 42
where we neglected the term Ve in comparison with other terms of equation (43), which in any practical
c

situation is quite warranted, and A stands for the Laplacian.
Thus, substituting the Hamiltonian (43) into equation (6), we derive the quantum phase for a moving
charged particle in the presence of EM field as

5=§J.(Pdt_hi;_,‘A'ds_é.[(pv.ds_éjv(/l.v).ds, (44)

where the first two terms on the right side stand for the electric (1) and magnetic (2) AB phases, while the third
and fourth terms describe the complementary electric (21) and magnetic (30) AB phases, corresponsingly,
which we disclosed in references [25; 26].

Thus, the re-definition of the momentum operator (41), which we suggested instead of the customary defini-
tion (36), actually allows describing all quantum phase effects for charged particles in EM field, and to ensure
a full harmony between equations (44) and (15), describing quantum phase effects respectively for charges and
dipoles, with their relationship according to figure.

We add that the negative sign for the velocity-dependent quantum phases in equation (44) reflects the in-
verse dependence of the de Broglie wavelength of charged particle A on the interactional EM field momentum
according to equation (32).

Conclusion

Thus, analysing quantum phase effects for moving dipoles, we have shown that, in addition to the known
Aharonov — Casher and He — McKellar — Wilkens phases (equations (3) and (4), correspondingly), there are
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two novel phases (16), (17), and the entire set of the phases 3,,z, 8,3, 8, 6,,z, correspond to a full set of com-
binations between the pair p, m and the pair E, B.

These results made topical the problem of determination of the physical meaning for quantum phases of
moving dipoles, and in references [25; 26] we suggested to explain their origin via the superposition of funda-
mental quantum phases for point-like charges composing the dipoles.

On this way, we discovered two novel fundamental phase effects with the complementary electric 3, (21)
and complementary magnetic d_, (30) AB phases, correspondingly.

The disclosure of all quantum phase effects for point-like charges allowed us to conclude that the de Broglie
wavelength for a moving charged particle depends not only on its mechanical momentum P,,, but also on the
interactional EM momentum P,, via the modulus of the vector sum of mechanical and EM momenta |PM + Py |
(see equation (32)). The latter equation allows us to understand all quantum phase effects for a moving charge
as a corresponding variation of its de Broglie wavelength with the scalar and vector potentials.

One should further notice that the direct observation of the phases 8, 84 is hardly possible for non-relati-
vistic charges, where the electric (3,) and magnetic (6,) AB phases strongly dominate. However, for electrically
neutral dipoles, the phases 8, 8, are vanishing, that opens the principal possibility to measure, at least indi-
rectly, the complementary phases 6, 0.,

In particular, as we have shown above, the AC phase for a moving magnetic dipole in an electric field rep-
resents the superposition of 8, phases for all charges of the dipole and hence, the experimental observation
of the AC phase [7] does prove the existence of complementary electric AB phase 8, too. This result already
indicates the need to re-define the momentum operator according to equation (41), where it is associated with
the sum of mechanical momentum and EM momentum for a charged particle in an EM field. Then, as we
have shown above, the Schrodinger equation for a charged particle with the momentum operator (41) yields
equation (44) for the total phase of such particle, which contains both the previously known AB electric and
magnetic phases (the first and second terms on the right side), as well as previously unknown complementary
electric and magnetic AB phases (the third and fourth terms on the right side).

Further, we emphasise that the proposed re-definition of the momentum operator (41) must be universal,
and also applicable to the Klein — Gordon equation and the Dirac equation. In this respect we remind that
known fact that the sum of mechanical momentum of particle P, and interactional field momentum Py, repre-
sents the spatial components of the four-vector, whose time component is defined as the sum of the energy of
particle and the energy of interactional EM field. Thus, the proposed re-definition of the operator of momen-
tum (41) keeps the Lorentz invariance of the Klein — Gordon and Dirac equations, and allows us to describe
the fundamental phase effects (44) for freely moving charge, too.

With respect to electrically bound quantum systems, in reference [27] we suggested the corresponding
modification of fundamental equations of atomic physics with the suggested re-definition of the momentum
operator (41), and have shown that this way promises the elimination of the available subtle deviations be-
tween calculated and measured data in precise physics of simple atoms.

However, this problem lies outside the scope of the present paper, and will be analysed elsewhere.
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