

Fig. 2. Schemes of the transition of an electron (e^-) from the Fermi level of graphene $(E_F - e\varphi)$ to the lowest unoccupied molecular orbital (LUMO) with the formation of a negative molecular ion (a) and the transition of an electron from the highest occupied molecular orbital (HOMO) to the Fermi level of graphene with the formation of a positive molecular ion (b). The dependences of the single-electron energy of graphene in one of the six equivalent points of the $1^{\rm st}$ Brillouin zone on the wave number k of π -electrons when an electric potential $\varphi < 0$ (a) or $\varphi > 0$ (b) is applied to the graphene are shown; EA is the electron affinity of the molecule, IP is the ionisation energy (potential) of the molecule