Электрофизиологический и радиоизотопный анализ потоков ионов, индуцируемых солевым и окислительным стрессом, в клетках корня высших растений

  • Вероника Валерьевна Самохина Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь
  • Полина Вацлавовна Гриусевич Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь
  • Анатолий Иосифович Соколик Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь
  • Вадим Викторович Демидчик Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Аннотация

Под действием стресс-факторов среды активируется выход важнейших электролитов неорганической и органической природы из клеток корня во внешнее пространство. Данное явление описано для засоления, засухи, атаки патогенов, воздействия тяжелых металлов, окислительного стресса и др. Выход электролитов также наблюдается в рамках некоторых процессов нормальной физиологии как часть гравитропического ответа, формирования полярности и роста клетки растяжением. Несмотря на длительное изучение данного феномена, его молекулярный механизм остается непонятным. В настоящем исследовании для изучения биофизической и молекулярной природы выхода ионов из клеток корня развит комплексный подход на основе метода меченых атомов (загрузка 86Rb+ с последующей регистрацией параметров его выхода из клеток корня), реверсивной генетики и техники локальной фиксации потенциала на мембране. Продемонстрировано, что в корнях Arabidоpsis thaliаna (L.) Heynh. выход K+ при засолении и окислительном стрессе обеспечивается K+-каналами, кодируемыми геном GORK (guard cell outward-rectifying K+channel), а выход органических анионов – анионными каналами, кодируемыми геном ALMT1 (aluminum-activated malate transporter 1). Установлены особенности совместного функционирования данных систем при стрессе.

Биографии авторов

Вероника Валерьевна Самохина, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

старший преподаватель кафедры клеточной биологии и биоинженерии растений биологического факультета, научный сотрудник научно-исследовательской лаборатории физиологии и биотехнологии растений

Полина Вацлавовна Гриусевич, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

старший преподаватель кафедры клеточной биологии и биоинженерии растений биологического факультета, младший научный сотрудник научно-исследовательской лаборатории физиологии и биотехнологии растений

Анатолий Иосифович Соколик, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

кандидат биологических наук, доцент; заведующий научно-исследовательской лабораторией физиологии и биотехнологии растений кафедры клеточной биологии и биоинженерии растений биологического факультета

Вадим Викторович Демидчик, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

член-корреспондент НАН Беларуси, доктор биологических наук, доцент; декан биологического факультета

Литература

  1. Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany. 2014;65(5):1259–1270. DOI: 10.1093/jxb/eru004.
  2. Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, et al. Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiology. 2006;141(4):1653–1665. DOI: 10.1104/pp.106.082388.
  3. Verma H, Devi K, Baruah AR, Sarma RN. Relationship of root aquaporin genes, OsPIP1;3, OsPIP2;4, OsPIP2;5, OsTIP2;1 and OsNIP2;1 expression with drought tolerance in rice. The Indian Journal of Genetics and Plant Breeding. 2020;80(1):50–57. DOI: 10.31742/IJGPB.80.1.6.
  4. Murphy AS, Eisinger WR, Shaff JE, Kochian LV, Taiz L. Early copper-induced leakage of K+ from Arabidopsis seedlings is mediated by ion channels and coupled to citrate efflux. Plant Physiology. 1999;121(4):1375–1382. DOI: 10.1104/pp.121.4.1375.
  5. Holzer P. Acid-sensitive ion channels and receptors. In: Canning BJ, Spina D, editors. Sensory nerves. Dordrecht: Springer;2009. p. 283–332 (Handbook of experimental pharmacology; volume 194). DOI: 10.1007/978-3-540-79090-7_9.
  6. Bojórquez-Quintal E, Escalante-Magaña C, Echevarría-Machado I, Martínez-Estévez M. Aluminum, a friend or foe of higher plants in acid soils. Frontiers in Plant Science. 2017;8:01767. DOI: 10.3389/fpls.2017.01767.
  7. Demidchik V, Tyutereva EV, Voitsekhovskaja OV. The role of ion disequilibrium in induction of root cell death and autophagy by environmental stresses. Functional Plant Biology. 2018;45(1–2):28–46. DOI: 10.1071/FP16380.
  8. Cui Yongmei, Lu Shan, Li Zhan, Cheng Jiawen, Hu Peng, Zhu Tianquan, et al. Cyclic nucleotide-gated ion channels 14 and 16 promote tolerance to heat and chilling in rice. Plant Physiology. 2020;183(4):1794–1808. DOI: 10.1104/pp.20.00591.
  9. Blatt MR, Grabov A, Brearley J, Hammond-Kosack K, Jones JDG. K+ channels of Cf-9 transgenic tobacco guard cells as targets for Cladosporium fulvum Avr9 elicitor-dependent signal transduction. The Plant Journal. 1999;19(4):453–462. DOI: 10.1046/j.1365-313x.1999.00534.x.
  10. Demidchik V, Tester M. Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiology. 2002;128(2):379–387. DOI: 10.1104/pp.010524.
  11. Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, et al. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiology. 2007;145(4):1714–1725. DOI: 10.1104/pp.107.110262.
  12. Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K. New insights on plant salt tolerance mechanisms and their potential use for breeding. Frontiers in Plant Science. 2016;7:01787. DOI: 10.3389/fpls.2016.01787.
  13. Atkinson MM, Midland SL, Sims JJ, Keen NT. Syringolide 1 triggers Ca2+ influx, K+ efflux, and extracellular alkalization in soybean cells carrying the disease-resistance gene Rpg4. Plant Physiology. 1996;112(1):297–302. DOI: 10.1104/pp.112.1.297.
  14. Finlayson JE, Pritchard MK, Rimmer SR. Electrolyte leakage and storage decay of five carrot cultivars in response to infection by Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology. 1989;11(3):313–316. DOI: 10.1080/07060668909501119.
  15. Kang H-M, Saltveit ME. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiologia Plantarum. 2002;115(4):571–576. DOI: 10.1034/j.1399-3054.2002.1150411.x.
  16. Biswas SK, Pandey NK, Rajik M. Inductions of defense response in tomato against Fusarium wilt through inorganic chemicals as inducers. Journal of Plant Pathology & Microbiology. 2012;3(4):128–135. DOI: 10.4172/2157-7471.1000128.
  17. McKersie BD, Stinson RH. Effect of dehydration on leakage and membrane structure in Lotus corniculatus L. seeds. Plant Physiology. 1980;66(2):316–320. DOI: 10.1104/pp.66.2.316.
  18. Becwar MR, Stanwood PC, Roos EE. Dehydration effects on imbibitional leakage from desiccation-sensitive seeds. Plant Physiology. 1982;69(5):1132–1135. DOI: 10.1104/pp.69.5.1132.
  19. Bajji M, Kinet J-M, Lutts S. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation. 2002;36(1):61–70. DOI: 10.1023/A:1014732714549.
  20. Kashtoh H, Baek K-H. Structural and functional insights into the role of guard cell ion channels in abiotic stress-induced stomatal closure. Plants. 2021;10(12):2774. DOI: 10.3390/plants10122774.
  21. Colcombet J, Mathieu Y, Peyronnet R, Agier N, Lelièvre F, Barbier-Brygoo H, et al. R-type anion channel activation is an essential step for ROS-dependent innate immune response in Arabidopsis suspension cells. Functional Plant Biology. 2009;36(9):832–843. DOI: 10.1071/FP09096.
  22. Guo Wei, Wang Chengcheng, Zuo Zhangli, Qiu Jin-Long. The roles of anion channels in Arabidopsis immunity. Plant Signaling & Behavior. 2014;9(7):e29230. DOI: 10.4161/psb.29230.
  23. Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, et al. Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. Journal of Cell Science. 2010;123(9):1468–1479. DOI: 10.1242/jcs.064352.
  24. Demidchik V, Davenport RJ, Tester M. Nonselective cation channels in plants. Annual Reviews of Plant Biology. 2002;53:67–107. DOI: 10.1146/annurev.arplant.53.091901.161540.
  25. Hedrich R. Ion channels in plants. Physiological Reviews. 2012;92(4):1777–1811. DOI: 10.1152/physrev.00038.2011.
  26. Demidchik V, Maathuis FJM. Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytologist. 2007;175(3):387–404. DOI: 10.1111/j.1469-8137.2007.02128.x.
  27. Dreyer I, Uozumi N. Potassium channels in plant cells. The FEBS Journal. 2011;278(22):4293–4303. DOI: 10.1111/j.1742-4658.2011.08371.x.
  28. Demidchik V, Shabala S, Isayenkov S, Cuin TA, Pottosin I. Calcium transport across plant membranes: mechanisms and functions. New Phytologist. 2018;220(1):49–69. DOI: 10.1111/nph.15266.
  29. Demidchik V. ROS-activated ion channels in plants: biophysical characteristics, physiological functions and molecular nature. International Journal of Molecular Sciences. 2018;19(4):1263. DOI: 10.3390/ijms19041263.
  30. Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, et al. Identification and disruption of a plant Shaker-likeoutward channel involved in K+ release into the xylem sap. Cell. 1998;94(5):647–655. DOI: 10.1016/s0092-8674(00)81606-2.
  31. Barbier-Brygoo H, De Angeli A, Filleur S, Frachisse J-M, Gambale F, Thomine S, et al. Anion channels/transporters in plants: from molecular bases to regulatory networks. Annual Review of Plant Biology. 2011;62:25–51. DOI: 10.1146/annurev-arplant-042110-103741.
  32. Nedelyaeva OI, Shuvalov AV, Balnokin YuV. Chloride channels and transporters of the CLC family in plants. Russian Journal of Plant Physiology. 2020;67(5):767–784. DOI: 10.1134/S1021443720050106.
  33. Linder B, Raschke K. A slow anion channel in guard cells, activating at large hyperpolarization, may be principal for stomatal closing. FEBS Letters. 1992;313(1):27–30. DOI: 10.1016/0014-5793(92)81176-m.
  34. Vahisalu T, Kollist H, Wang Y-F, Nishimura N, Chan W-Y, Valerio G, et al. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signaling. Nature. 2008;452(7186):487–491. DOI: 10.1038/nature06608.
  35. Kovermann P, Meyer S, Hörtensteiner S, Picco C, Scholz-Starke J, Ravera S, et al. The Arabidopsis vacuolar malate channel is a member of the ALMT family. The Plant Journal. 2007;52(6):1169–1180. DOI: 10.1111/j.1365-313X.2007.03367.x.
  36. Meyer S, Scholz-Starke J, De Angeli A, Kovermann P, Burla B, Gambale F, et al. Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation. The Plant Journal. 2011;67(2):247–257. DOI: 10.1111/j.1365-313X.2011.04587.x.
  37. Sim CC, Zaharah AR. Potassium uptake kinetics by oil palm root via radiotracer techniques. Asian Journal of Plant Sciences. 2014;13(4–8):195–197. DOI: 10.3923/ajps.2014.195.197.
  38. Demidchik V. Characterisation of root plasma membrane Ca2+-permeable cation channels: techniques and basic concepts. In: Volkov AG, editor. Plant electrophysiology: signaling and responses. Heidelberg: Springer; 2012. p. 339–369. DOI: 10.1007/978-3-642-29110-4_14.
  39. Läuchli A, Epstein E. Transport of potassium and rubidium in plant roots: the significance of calcium. Plant Physiology. 1970;45(5):639–641. DOI: 10.1104/pp.45.5.639.
  40. Demidchik V. Mechanisms and physiological roles of K+ efflux from root cells. Journal of Plant Physiology. 2014;171(9):696–707. DOI: 10.1016/j.jplph.2014.01.015.
  41. Murphy A, Taiz L. Correlation between potassium efflux and copper sensitivity in 10 Arabidopsis ecotypes. New Phytologist. 1997;136(2):211–222. DOI: 10.1046/j.1469-8137.1997.00738.x.
  42. Lebaudy A, Véry A-A, Sentenac H. K+ channel activity in plants: genes, regulations and functions. FEBS Letters. 2007;581(12):2357–2366. DOI: 10.1016/j.febslet.2007.03.058.
  43. Zsoldos F. Uptake and efflux of ions in fungicide-treated rice plants. Plant and Soil. 1974;41(1):41–49.
  44. Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM. Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. Journal of Cell Science. 2003;116(1):81–88. DOI: 10.1242/jcs.00201.
  45. Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature. 2003;422(6930):442–446. DOI: 10.1038/nature01485.
  46. Zepeda-Jazo I, Velarde-Buendía AM, Enríquez-Figueroa R, Bose J, Shabala S, Muñiz-Murguía J, et al. Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiology. 2011;157(4):2167–2180. DOI: 10.1104/pp.111.179671.
  47. Wu H, Shabala L, Zhou M, Shabala S. Chloroplast-generated ROS dominate NaCl− induced K+ efflux in wheat leaf mesophyll. Plant Signaling & Behavior. 2015;10(5):e1013793. DOI: 10.1080/15592324.2015.1013793.
  48. Breygina MA, Abramochkin DV, Maksimov NM, Yermakov IP. Hydrogen peroxide affects ion channels in lily pollen grain protoplasts. Plant Biology. 2016;18(5):761–767. DOI: 10.1111/plb.12470.
Опубликован
2022-10-26
Ключевые слова: метод локальной фиксации потенциала, электрофизиология растений, радиоизотопный анализ, 86Rb, ионный канал, GORK, ALMT1
Поддерживающие организации Работа выполнена в рамках научно-исследовательского проекта «Характеризация пассивного транспорта органических анионов через плазматическую мембрану клеток корня высших растений» по гранту Министерства образования Республики Беларусь на 2022 г. (№ гос. регистрации 20220676), а также в рамках задания «Закономерности воздействия холодной плазмы на процессы клеточной сигнализации у высших растений» государственной программы научных исследований «Конвергенция-2025» (№ гос. регистрации 20211734).
Как цитировать
Самохина, В. В., Гриусевич, П. В., Соколик, А. И., & Демидчик, В. В. (2022). Электрофизиологический и радиоизотопный анализ потоков ионов, индуцируемых солевым и окислительным стрессом, в клетках корня высших растений. Экспериментальная биология и биотехнология, 3, 14-25. https://doi.org/10.33581/2957-5060-2022-3-14-25
Раздел
Клеточная биология и физиология