Damage of central nervous system synapses at brain diseases: membrane mechanisms and methods of correction

  • Sergei V. Fedorovich Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Vadim V. Demidchik Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

Abstract

Diseases of the central nervous system are a serious medical and social problem. Many of them are incurable or difficult to treat pharmacologically. Synapses damaging by different origin (synapthopathies) leading to malfunctioning synaptic transmission and pathological modification of nervous tissue often is underlied in brain diseases. Various objects are used to study the functional properties of synapses, one of the most popular being isolated neuronal presynaptic endings synaptosomes retaining intact plasma membrane and majority intracellular regulating and energetic system of neuron. This review analyses the results of our own research and the work of the world’s leading scientific centres, revealing important aspects of the pathogenesis of the brain, focused on data obtained using synaptosomes. The analysis showed that the pathogenesis of various brain diseases is based on both the accumulation of specific proteins and non-specific physicochemical factors. The most important examples of both types of influences are amyloid peptide synthesis, increase in the extracellular concentration of glutamate and pH decrease. These changes are characteristic of both ischemic stroke and many neurodegenerative diseases. It has been established that extracellular acidification leads to the formation of reactive oxygen species in the electron transport chain of synaptosomal mitochondria, and an increase in the concentration of glutamate in the incubation medium activates NADPH oxidase of the plasma membrane of synaptosomes followed by reactive oxygen species generation in extracellular space. Hypoglycemia, a serious complication of diabetes mellitus, leads to inhibition of exocytosis in synaptosomes, which may be a protective mechanism rather than a damaging effect. Several factors were identified that can be used for synaptic dysfunction correction in diseases of the central nervous system. So, epilepsy can be treated by the ketogenic diet, when carbohydrates are replaced by fats in the ration, which leads to the synthesis of ketone bodies, primarily β-hydroxybutyrate. It was shown using synaptosomes as an experimental model, that β-hydroxybutyrate inhibits endocytosis, which may be the reason for the anticonvulsant effect of the ketogenic diet. Another way to correct the work of synapses are nootropic drugs. It has been shown that glycine and piracetam, which have nootropic properties, are able to induce the activation of presynaptic inhibitory receptors, followed by the efflux of chlorine ions from the cytosol and depolarisation of the plasma membrane. The lowering of the depolarisation threshold for the neurotransmitter release can explain the nootropic effect of these compounds. So, the functioning of the presynaptic terminal of a neuron can be impaired or vice versa corrected by specific targets manipulation. Activation or deactivation of identified targets can be the basis for various brain diseases therapy.

Author Biographies

Sergei V. Fedorovich, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

PhD (biology), docent; associate professor at the department of biochemistry, faculty of biology

Vadim V. Demidchik, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

doctor of science (biology), corresponding member of the National Academy of Sciences of Belarus, docent; dean of the faculty of biology

References

  1. Feigin VL, Vos T, Nichols E, Owolabi MO, Carroll WM, Dichgans M, et al. The global burden of neurological disorders: translating evidence into policy. The Lancet Neurology. 2020;19(3):255–265. DOI: 10.1016/S1474-4422(19)30411-9.
  2. Ding Chenyu, Wu Yuying, Chen Xiaoyong, Chen Yue, Wu Zanyi, Lin Zhangya, et al. Global, regional, and national burden and attributable risk factors of neurological disorders: the global burden of disease study 1990–2019. Frontiers in Public Health. 2022;10:952161. DOI: 10.3389/fpubh.2022.952161.
  3. Di Luca M, Olesen J. The cost of brain diseases: a burden or a challenge? Neuron. 2014;82(6):1205–1208. DOI: 10.1016/j.neuron.2014.05.044.
  4. Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nature Reviews Neuroscience. 2006;7(9):710–723. DOI: 10.1038/nrn1971.
  5. De Strooper B. Proteases and proteolysis in Alzheimer disease: a multifactorial view on the disease process. Physiological Reviews. 2010;90(2):465–494. DOI: 10.1152/physrev.00023.2009.
  6. McColgan P, Tabrizi SJ. Huntington’s disease: a clinical review. European Journal of Neurology. 2018;25(1):24–34. DOI: 10.1111/ene.13413.
  7. Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiological Reviews. 2011;91(4):1161–1218. DOI: 10.1152/physrev.00022.2010.
  8. Oertel-Knöchel V, Bittner RA, Knöchel C, Prvulovic D, Hampel H. Discovery and development of integrative biological markers for schizophrenia. Progress in Neurobiology. 2011;95(4):686–702. DOI: 10.1016/j.pneurobio.2011.05.006.
  9. George PM, Steinberg GK. Novel stroke therapeutics: unraveling stroke pathophysiology and its impact on clinical treatments. Neuron. 2015;87(2):297–309. DOI: 10.1016/j.neuron.2015.05.041.
  10. Hu K, Carroll J, Fedorovich S, Rickman C, Sukhodub A, Davletov B. Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Nature. 2002;415(6872):646–650. DOI: 10.1038/415646a.
  11. Südhof TC. The synaptic vesicle cycle. Annual Review of Neuroscience. 2004;27:509–547. DOI: 10.1146/annurev.neuro.26.041002.131412.
  12. Südhof TC. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron. 2013;80(3):675–690. DOI: 10.1016/j.neuron.2013.10.022.
  13. Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflügers Archiv – European Journal of Physiology. 2010;460(2):525–542. DOI: 10.1007/s00424-010-0809-1.
  14. Hofmeijer J, van Putten MJAM. Ischemic cerebral damage: an appraisal of synaptic failure. Stroke. 2012;43(2):607–615. DOI: 10.1161/STROKEAHA.111.632943.
  15. Spires-Jones TL, Hyman BT. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron. 2014;82(4):756–771. DOI: 10.1016/j.neuron.2014.05.004.
  16. Wilhelm BG, Mandad S, Truckenbrodt S, Kröhnert K, Schäfer C, Rammner B, et al. Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science. 2014;344(6187):1023–1028. DOI: 10.1126/science.1252884.
  17. Fedorovich S, Hofmeijer J, van Putten MJAM, le Feber J. Reduced synaptic vesicle recycling during hypoxia in cultured cortical neurons. Frontiers in Cellular Neuroscience. 2017;11:32. DOI: 10.3389/fncel.2017.00032.
  18. Wang L-Y, Augustine GJ. Presynaptic nanodomains: a tale of two synapses. Frontiers in Cellular Neuroscience. 2014;8:455. DOI: 10.3389/fncel.2014.00455.
  19. Moser T, Grabner CP, Schmitz F. Sensory processing at ribbon synapses in the retina and the cochlea. Physiological Reviews. 2020;100(1):103–144. DOI: 10.1152/physrev.00026.2018.
  20. Hebb CO, Whittaker VP. Intracellular distributions of acetylcholine and choline acetylase. The Journal of Physiology. 1958;142(1):187–196. DOI: 10.1113/jphysiol.1958.sp006008.
  21. Waseem TV, Konev SV, Fedorovich SV. Influence of hypotonic shock on glutamate and GABA uptake in rat brain synaptosomes. Neurochemical Research. 2004;29(9):1653–1658. DOI: 10.1023/b:nere.0000035799.79422.d1.
  22. Waseem TV, Rakovich AA, Lavrukevich TV, Konev SV, Fedorovich SV. Calcium regulates the mode of exocytosis induced by hypotonic shock in isolated neuronal presynaptic endings. Neurochemistry International. 2005;46(3):235–242. DOI: 10.1016/j.neuint.2004.09.002.
  23. Fedorovich SV, Waseem TV, Puchkova LV. Biogenetic and morphofunctional heterogeneity of mitochondria: the case of synaptic mitochondria. Reviews in the Neurosciences. 2017;28(4):363–373. DOI: 10.1515/revneuro-2016-0077.
  24. Aguzzi A, Calella AM. Prions: protein aggregation and infectious diseases. Physiological Reviews. 2009;89(4):1105–1152. DOI: 10.1152/physrev.00006.2009.
  25. Brandon NJ, Millar JK, Korth C, Sive H, Singh KK, Sawa A. Understanding the role of DISC1 in psychiatric disease and during normal development. Journal of Neuroscience. 2009;29(41):12768–12775. DOI: 10.1523/JNEUROSCI.3355-09.2009.
  26. Yates CM, Butterworth J, Tennant MC, Gordon A. Enzyme activities in relation to pH and lactate in postmortem brain in Alzheimer-type and other dementias. Journal of Neurochemistry. 1990;55(5):1624–1630. DOI: 10.1111/j.1471-4159.1990.tb04948.x.
  27. Fedorovich SV, Waseem TV. Metabolic regulation of synaptic activity. Reviews in the Neurosciences. 2018;29(8):825–835. DOI: 10.1515/revneuro-2017-0090.
  28. Corbyn Z. A growing global burden. Nature. 2014;510(7506):S2 – S3. DOI: 10.1038/510S2a.
  29. Kraig RP, Chesler M. Astrocytic acidosis in hyperglycemic and complete ischemia. Journal of Cerebral Blood Flow & Metabolism. 1990;10(1):104–114. DOI: 10.1038/jcbfm.1990.13.
  30. Wemmie JA, Taugher RJ, Kreple CJ. Acid-sensing ion channels in pain and disease. Nature Reviews Neuroscience. 2013;14(7):461–471. DOI: 10.1038/nrn3529.
  31. Choi DW. Excitotoxicity: still hammering the ischemic brain in 2020. Frontiers in Neuroscience. 2020;14:579953. DOI: 10.3389/fnins.2020.579953.
  32. Fedorovich SV, Dubouskaya TG, Waseem TV. Synaptic receptors for low pH in extracellular space: metabotropic receptors are an underestimated factor in stroke. Neural Regeneration Research. 2020;15(11):2033–2034. DOI: 10.4103/1673-5374.282249.
  33. Zha X-M, Xiong Z-G, Simon RP. pH and proton-sensitive receptors in brain ischemia. Journal of Cerebral Blood Flow & Metabolism. 2022;42(8):1349–1363. DOI: 10.1177/0271678X221089074.
  34. Ludwig M-G, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, et al. Proton-sensing G-protein-coupled receptors. Nature. 2003;425(6953):93–98. DOI: 10.1038/nature01905.
  35. Pekun TG, Lemeshchenko VV, Lyskova TI, Waseem TV, Fedorovich SV. Influence of intra- and extracellular acidification on free radical formation and mitochondria membrane potential in rat brain synaptosomes. Journal of Molecular Neuroscience. 2013;49(1):211–222. DOI: 10.1007/s12031-012-9913-3.
  36. Dubouskaya TG, Hrynevich SV, Waseem TV, Fedorovich SV. Calcium release from intracellular stores is involved in mitochondria depolarization after lowering extracellular pH in rat brain synaptosomes. Acta Neurobiologiæ Experimentalis. 2018;78(4):343–352. DOI: 10.21307/ane-2018-033.
  37. Keating DJ. Mitochondrial dysfunction, oxidative stress, regulation of exocytosis and their relevance to neurodegenerative diseases. Journal of Neurochemistry. 2008;104(2):298–305. DOI: 10.1111/j.1471-4159.2007.04997.x.
  38. Reynolds IJ, Hastings TG. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. The Journal of Neuroscience. 1995;15(5):3318–3327. DOI: 10.1523/JNEUROSCI.15-05-03318.1995.
  39. Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM, Lee H, et al. NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nature Neuroscience. 2009;12(7):857–863. DOI: 10.1038/nn.2334.
  40. Alekseenko AV, Lemeshchenko VV, Pekun TG, Waseem TV, Fedorovich SV. Glutamate-induced free radical formation in rat brain synaptosomes is not dependent on intrasynaptosomal mitochondria membrane potential. Neuroscience Letters. 2012;513(2):238–242. DOI: 10.1016/j.neulet.2012.02.051.
  41. Bouron A. Modulation of spontaneous quantal release of neurotransmitters in the hippocampus. Progress in Neurobiology. 2001;63(6):613–635. DOI: 10.1016/s0301-0082(00)00053-8.
  42. Waseem TV, Lapatsina LP, Fedorovich SV. Influence of integrin-blocking peptide on gadolinium- and hypertonic shrinkinginduced neurotransmitter release in rat brain synaptosomes. Neurochemical Research. 2008;33(7):1316–1324. DOI: 10.1007/s11064-007-9585-5.
  43. Waseem TV, Kolos VA, Lapatsina LP, Fedorovich SV. Influence of cholesterol depletion in plasma membrane of rat brain synaptosomes on calcium-dependent and calcium-independent exocytosis. Neuroscience Letters. 2006;405(1–2):106–110. DOI: 10.1016/j.neulet.2006.06.029.
  44. Harris JJ, Jolivet R, Attwell D. Synaptic energy use and supply. Neuron. 2012;75:762–777. DOI: 10.1016/j.neuron.2012.08.019.
  45. Languren G, Montiel T, Julio-Amilpas A, Massieu L. Neuronal damage and cognitive impairment associated with hypoglycemia: an integrated view. Neurochemistry International. 2013;63(4):331–343. DOI: 10.1016/j.neuint.2013.06.018.
  46. Hrynevich SV, Pekun TG, Waseem TV, Fedorovich SV. Influence of glucose deprivation on membrane potentials of plasma membranes, mitochondria and synaptic vesicles in rat brain synaptosomes. Neurochemical Research. 2015;40(6):1188–1196. DOI: 10.1007/s11064-015-1579-0.
  47. Gano LB, Patel M, Rho JM. Ketogenic diets, mitochondria, and neurological diseases. Journal of Lipid Research. 2014;55(11):2211–2228. DOI: 10.1194/jlr.R048975.
  48. Fedorovich SV, Voronina PP, Waseem TV. Ketogenic diet versus ketoacidosis: what determines the influence of ketone bodies on neurons? Neural Regeneration Research. 2018;13(12):2060–2063. DOI: 10.4103/1673-5374.241442.
  49. Hrynevich SV, Waseem TV, Hébert A, Pellerin L, Fedorovich SV. β-Hydroxybutyrate supports synaptic vesicle cycling but reduces endocytosis and exocytosis in rat brain synaptosomes. Neurochemistry International. 2016;93:73–81. DOI: 10.1016/j.neuint.2015.12.014.
  50. Kanikarla-Marie P, Jain SK. Hyperketonemia and ketosis increase the risk of complications in type 1 diabetes. Free Radical Biology and Medicine. 2016;95:268–277. DOI: 10.1016/j.freeradbiomed.2016.03.020.
  51. Voronina PP, Adamovich KV, Adamovich TV, Dubouskaya TG, Hrynevich SV, Waseem TV, et al. High concentration of ketone body β-hydroxybutyrate modifies synaptic vesicle cycle and depolarizes plasma membrane of rat brain synaptosomes. Journal of Molecular Neuroscience. 2020;70(1):112–119. DOI: 10.1007/s12031-019-01406-9.
  52. Lovinger DM, Mateo Y, Johnson KA, Engi SA, Antonazzo M, Cheer JF. Local modulation by presynaptic receptors controls neuronal communication and behaviour. Nature Reviews Neuroscience. 2022;23(4):191–203. DOI: 10.1038/s41583-022-00561-0.
  53. Ben-Ari Y, Gaiarsa J-L, Tyzio R, Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiological Reviews. 2007;87(4):1215–1284. DOI: 10.1152/physrev.00017.2006.
  54. Waseem TV, Fedorovich SV. Presynaptic glycine receptors influence plasma membrane potential and glutamate release. Neurochemical Research. 2010;35(8):1188–1195. DOI: 10.1007/s11064-010-0174-7.
  55. Fedorovich SV. Piracetam induces plasma membrane depolarization in rat brain synaptosomes. Neuroscience Letters. 2013;553:206–210. DOI: 10.1016/j.neulet.2013.08.045.
  56. Malík M, Tlustoš P. Nootropic as cognitive enhancers: types, dosage and side effects of smart drugs. Nutrients. 2022;14(16):3367. DOI: 10.3390/nu14163367.
  57. File SE, Fluck E, Fernandes C. Beneficial effects of glycine (Bioglycin) on memory and attention in young and middle-aged adults. Journal of Clinical Psychopharmacology. 1999;19(6):506–512. DOI: 10.1097/00004714-199912000-00004.
Published
2023-11-08
Keywords: brain, synapses, synaptosomes, ketogenic diet, nootropic drugs, hypoglycemia
Supporting Agencies This work was supported by Belarusian State University rector’s grant (S. V. Fedorovich). The authors grateful student at the faculty of biology K. P. Kepel for help with figure.
How to Cite
Fedorovich, S. V., & Demidchik, V. V. (2023). Damage of central nervous system synapses at brain diseases: membrane mechanisms and methods of correction. Experimental Biology and Biotechnology, 3, 4-11. https://doi.org/10.33581/2957-5060-2023-3-4-11