Extending the «two-hits» hypothesis: the molecular mechanisms of RUNX1-RUNX1T1-mediated leuke mogenesis

  • Ilya N. Ilyushonak Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Hanna A. Saurytskaya Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Nikolai N. Yatskov Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Viktor V. Skakun Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Vasiliy V. Grinev Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

Abstract

The fusion oncogene RUNX1-RUNX1T1 is a main outcome of t(8;21)(q22;q22) nonhomologous translocation. To date, this oncogene is considered as one of the key drivers of acute myeloid leukemia. However, despite more than 20 years of study, the role of RUNX1-RUNX1T1 oncogene in development of leukemia still unclear. According to commonly accepted «two-hits» hypothesis, the fusion protein RUNX1-RUNX1T1 is dominant negative regulator of target genes for intact transcription factor RUNX1, the master regulator of hematopoietic differentiation. Meanwhile, current empirical data does not allow considering this hypothesis as self-sufficient in the existing form. In particularly, it was shown that the fusion oncogene RUNX1-RUNX1T1 possesses anti-leukemia activity. This oncogene can also work not only as repressor but as transcription activator as well and it needs a functional cooperation with intact RUNX1. In this review, we considered a modern data about role of RUNX1-RUNX1T1 oncogene in development of acute myeloid leukemia and we also proposed some general ideas how to improve a model of RUNX1-RUNX1T1-mediated leukemogenesis. 

Author Biographies

Ilya N. Ilyushonak, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

masters of science (biology); assistant at the department of genetics, faculty of biology

Hanna A. Saurytskaya, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

student at the faculty of biology

Nikolai N. Yatskov, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

PhD (physics and mathematics), docent; associate professor at the department of system analysis and computer modeling, faculty of radiophysics and computer technologies

Viktor V. Skakun, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

PhD (physics and mathematics); head of the department of system analysis and computer modeling, faculty of radiophysics and computer technologies

Vasiliy V. Grinev, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

PhD (biology), docent; associate professor at the department of genetics, faculty of biology

References

  1. Döhner H., Weisdorf D. J., Bloomfield C. D. Acute Myeloid Leukemia. New Engl. J. Med. 2015. Vol. 373, issue 12. P. 1136 –1152. DOI: 10.1056/NEJMra1406184.
  2. Aleinikova O. V., Sitskevich O. N., Potapnev M. P., et al. [The modern diagnostics approaches of children and adult acute leukemia]. Minsk, 2001 (in Russ.).
  3. Müller A. M. S., Duque J., Shizuru J. A., et al. Complementing mutations in core binding factor leukemias: from mouse models to clinical applications. Oncogene. 2008. Vol. 27. P. 5759–5773. DOI: 10.1038/onc.2008.196. 4. Basecke J., Cepek L., Mannhalter C., et al. Transcription of AML1/ETO in bone marrow and cord blood of individuals without acute myelogenous leukemia. Blood. 2002. Vol. 100, No. 6. P. 2267–2268. DOI: 10.1182/blood-2002-06-1673.
  4. Mori H., Colman S. M., Xiao Z., et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc. Natl. Acad. Sci. USA. 2002. Vol. 99, No. 12. P. 8242– 8247. DOI: 10.1073/pnas.112218799.
  5. Gilliland D. G., Griffin J. D. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002. Vol. 100, No. 5. P. 1532–1542. DOI: 10.1182/blood-2002-02-0492.
  6. Peterson L. F., Boyapati A., Ahn E.-Y., et al. Acute myeloid leukemia with the 8q22;21q22 translocation: secondary mutational events and alternative t(8;21) transcripts. Blood. 2007. Vol. 110, No. 3. P. 799 – 805. DOI: 10.1182/blood-2006-11-019265.
  7. Pozner A., Goldenberg D., Negreanu V., et al. Transcription-coupled translation control of AML1/RUNX1 is mediated by cap- and internal ribosome entry site-dependent mechanisms. Mol. Cell. Biol. 2000. Vol. 20, issue 7. P. 2297–2307.
  8. Pozner A., Lotem J., Xiao C., et al. Developmentally regulated promoter-switch transcriptionally controls RUNX1 function during embryonic hematopoiesis. BMC Dev. Biol. 2007. Vol. 7, No. 84. DOI: 10.1186 /1471-213X-7-84.
  9. Bee T., Swiers G., Muroi S., et al. Nonredundant roles for Runx1 alternative promoters reflect their activity at discrete stages of developmental hematopoiesis. Blood. 2010. Vol. 115, No. 15. P. 3042–3050. DOI:10.1182/blood-2009-08-238626.
  10. Markova E. N., Kantidze O. L., Razin S. V. Transcription of the AML1/ETO chimera is guided by the P2 promoter of the AML1 gene in the Kasumi-1 cell line. Gene. 2012. Vol. 510, issue 2. P. 142–146. DOI: 10.1016/j.gene.2012.09.028.
  11. Migas A. A., Mishkova O. A., Ramanouskaya T. V., et al. RUNX1T1/MTG8/ETO gene expression status in human t(8;21) (q22;q22)-positive acute myeloid leukemia cells. Leuk. Res. 2014. Vol. 38, issue 9. P. 1102–1110. DOI: 10.1016/j.leukres.2014.06.002.
  12. Erickson P. F., Robinson M., Owens G., et al. The ETO portion of acute myeloid leukemia t(8;21) fusion transcript encodes a highly evolutionarily conserved, putative transcription factor. Cancer Res. 1994. Vol. 54, issue 7. P. 1782–1786.
  13. Liu Y., Cheney M. D., Gaudet J. J., et al. The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO’s activity. Cancer Cell. 2006. Vol. 9, issue 4. P. 249 –260. DOI: 10.1016/j.ccr.2006.03.012.
  14. Kwok C., Zeisig B. B., Qiu J., et al. Transforming activity of AML1-ETO is independent of CBFβ and ETO interaction but requires formation of homo-oligomeric complexes. Proc. Natl. Acad. Sci. USA. 2009. Vol. 106, No. 8. P. 2853–2858. DOI: 10.1073/ pnas.0810558106.
  15. Bartel Y., Grez M., Wichmann C. Interference with RUNX1/ETO leukemogenic function by cell-penetrating peptides targeting the NHR2 oligomerization domain. BioMed Res. Int. 2013. Vol. 2013. DOI: 10.1155/2013/297692.
  16. Lam K., Zhang D.-E. RUNX1 and RUNX1-ETO: roles in hematopoiesis and leukemogenesis. Front. Biosci. 2012. Vol. 17, issue 3. P. 1120 –1139. DOI:10.2741/3977.
  17. Erickson P. F., Dessev G., Lasher R. S., et al. ETO and AML1 phosphoproteins are expressed in CD34+ hematopoietic progenitors: implications for t(8;21) leukemogenesis and monitoring residual disease. Blood. 1996. Vol. 88, No. 5. P. 1813–1823.
  18. Kozu T., Fukuyama T., Yamami T., et al. MYND-less splice variants of AML1-MTG8 (RUNX1-CBFA2T1) are expressed in leukemia with t(8;21). Genes. Chromosomes Cancer. 2005. Vol. 43, issue 1. P. 45–53. DOI: 10.1002/gcc.20165.
  19. Wolford J. K., Prochazka M. Structure and expression of the human MTG8/ETO gene. Gene. 1998. Vol. 212, issue 1. P. 103 –109.
  20. Yan M., Kanbe E., Peterson L. F., et al. A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat. Med. 2006. Vol. 12, No. 8. P. 945– 949. DOI: 10.1038/nm1443.
  21. Link K. A., Lin S., Shrestha M., et al. Supraphysiologic levels of the AML1-ETO isoform AE9a are essential for transformation. Proc. Natl. Acad. Sci. USA. 2016. Vol. 113, No. 32. P. 9075 – 9080. DOI: 10.1073/pnas.1524225113. 23. Mannari D., Gascoyne D., Dunne J., et al. A novel exon in AML1-ETO negatively influences the clonogenic potential of the t(8;21) in acute myeloid leukemia. Leukemia. 2010. Vol. 24, issue 4. P. 891– 894. DOI: 10.1038/leu.2009.288.
  22. LaFiura K. M., Edwards H., Taub J. W., et al. Identification and characterization of novel AML1-ETO fusion transcripts in pediatric t(8;21) acute myeloid leukemia: a report from the Children’s Oncology group. Oncogene. 2008. Vol. 27, No. 36. P. 4933– 4942. DOI: 10.1038/onc.2008.134.
  23. Grinev V. V., Migas A. A., Kirsanava A. D., et al. Decoding of exon splicing patterns in the human RUNX1-RUNX1T1 fusion gene. Int. J. Biochem. Cell Biol. 2015. Vol. 68. P. 48 –58. DOI: 10.1016/j.biocel.2015.08.017.
  24. Ilyushonak I. M., Grinev V. V. Structural and functional characterization of the human fusion oncogene RUNX1-RUNX1T1 with bioinformatics approaches. International congress on computer science: information systems and technologies : proc. of the Int. sci. congr. (Minsk, 24 –27 Oct., 2016). Minsk, 2016. P. 155–159 (in Russ.).
  25. Shibata H., Nawaz Z., Tsai S. Y., et al. Gene silencing by chicken ovalbumin upstream promoter-transcription factor I (COUPTFI) is mediated by transcriptional corepressors, nuclear receptor-corepressor (N-CoR) and silencing mediator for retinoic acid receptor and thyroid hormone receptor (SMRT). Mol. Endocrinol. 1997. Vol. 11, No. 6. P. 714 –724. DOI: 10.1210/mend.11.6.0002.
  26. Hildebrand D., Tiefenbach J., Heinzel T., et al. Maurer A.B. Multiple regions of ETO cooperate in transcriptional repression. J. Biol. Chem. 2001. Vol. 276, issue 13. P. 9889 – 9895. DOI: 10.1074/jbc.M010582200. 29. Dannenberg J.-H., David G., Zhong S., et al. mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival. Genes Dev. 2005. Vol. 19, No. 13. P. 1581–1595. DOI: 10.1101/gad.1286905.
  27. Amann J. M., Nip J., Strom D. K., et al. ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds msin3a through its oligomerization domain. Mol. Cell. Biol. 2001. Vol. 21, issue 19. P. 6470 – 6483.
  28. DeKelver R.C., Yan M., Ahn E.-Y., et al. Attenuation of AML1-ETO cellular dysregulation correlates with increased leukemogenic potential. Blood. 2013. Vol. 121, No. 18. P. 3714 –3717. DOI: 10.1182/blood-2012-11-465641.
  29. Wang L., Gural A., Sun X. J., et al. The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science. 2011. Vol. 333, issue 6043. P. 765 –769. DOI: 10.1126/science.1201662.
  30. Ogryzko V. V., Schiltz R. L., Russanova V., et al. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996. Vol. 87, issue 5. P. 953 – 959. DOI: 10.1016/S0092-8674(00)82001-2.
  31. Bedford D. C., Brindle P. K. Is histone acetylation the most important physiological function for CBP and p300?. Aging. 2012. Vol. 4, issue 4. P. 247–255. DOI: 10.18632/aging.100453.
  32. Gao X., Lin J., Ning Q., et al. A histone acetyltransferase p300 inhibitor C646 induces cell cycle arrest and apoptosis selectively in AML1-ETO-Positive AML cells. PLoS One. 2013. Vol. 8, No. 2. Article number: e55481. DOI: 10.1371/journal.pone.0055481.
  33. Mandoli A., Singh A. A., Prange K. H., et al. The hematopoietic transcription factors RUNX1 and ERG prevent AML1-ETO oncogene overexpression and onset of the apoptosis program in t(8;21) AMLs. Cell Rep. 2016. Vol. 17, issue 8. P. 2087–2100. DOI: 10.1016/j.celrep.2016.08.082.
  34. Shia W.-J., Okumura A. J., Yan M., et al. PRMT1 interacts with AML1-ETO to promote its transcriptional activation and progenitor cell proliferative potential. Blood. 2012. Vol. 119, No. 21. P. 4953– 4962. DOI: 10.1182/blood-2011-04-347476.
  35. Chen M., Zhu N., Liu X., et al. JMJD1C is required for the survival of acute myeloid leukemia by functioning as a coactivator for key transcription factors. Genes Dev. 2015. Vol. 29, No. 20. P. 2123–2139. DOI: 10.1101/gad.267278.115.
  36. Zhang J., Kalkum M., Yamamura S., et al. E protein silencing by the leukemogenic AML1-ETO fusion protein. Science. 2004. Vol. 305, issue 5688. P. 1286 –1289. DOI: 10.1126/science.1097937.
  37. Guo C., Hu Q., Yan C., et al. Multivalent binding of the ETO corepressor to e proteins facilitates dual repression controls targeting chromatin and the basal transcription machinery. Mol. Cell. Biol. 2009. Vol. 29, No. 10. P. 2644 –2657. DOI: 10.1128/MCB.00073-09.
  38. Sun X. J., Wang Z., Wang L., et al. A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis. Nature. 2013. Vol. 500, issue 7460. P. 93– 97. DOI: 10.1038/nature12287.
  39. Vangala R. K., Heiss-Neumann M. S., Rangatia J. S., et al. The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood. 2003. Vol. 101, No. 1. P. 270 –277. DOI: 10.1182/blood-2002-04-1288.
  40. Burda P., Laslo P., Stopka T. The role of PU.1 and GATA-1 transcription factors during normal and leukemogenic hematopoiesis. Leukemia. 2010. Vol. 24, No. 7. P. 1249 –1257. DOI: 10.1038/leu.2010.104.
  41. Pabst T., Mueller B. U., Harakawa N., et al. AML1-ETO downregulates the granulocytic differentiation factor C/EBPα in t(8;21) myeloid leukemia. Nat. Med. 2001. Vol. 7, No. 4. P. 444 – 451. DOI: 10.1038/86515.
  42. Ohlsson E., Schuster M. B., Hasemann M., et al. The multifaceted functions of C/EBPα in normal and malignant haematopoiesis. Leukemia. 2016. Vol. 30, No. 4. P. 767–775. DOI: 10.1038/leu.2015.324.
  43. Choi Y., Elagib K. E., Delehanty L. L., et al. Erythroid inhibition by the leukemic fusion AML1-ETO is associated with impaired acetylation of the major erythroid transcription factor GATA-1. Cancer Res. 2006. Vol. 66, issue 6. P. 2990 –2996. DOI: 10.1158/0008-5472.CAN-05-2944.
  44. Quong M. W., Romanow W. J., Murre C. E protein function in lymphocyte development. Annu. Rev. Immunol. 2002. Vol. 20. P. 301–322. DOI: 10.1146/annurev.immunol.20.092501.162048.
  45. Alcalay M., Meani N., Gelmetti V., et al. Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J. Clin. Invest. 2003. Vol. 112, issue 11. P. 1751–1761. DOI: 10.1172/JCI17595.
  46. Krejci O., Wunderlich M., Geiger H., et al. p53 signaling in response to increased DNA damage sensitizes AML1-ETO cells to stress-induced death. Blood. 2008. Vol. 111, No. 4. P. 2190 –2199. DOI: 10.1182/blood-2007-06-093682.
  47. Esposito M. T., Zhao L., Fung T. K., et al. Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP inhibitors. Nat. Med. 2015. Vol. 21, No. 12. P. 1481–1490. DOI: 10.1038/nm.3993.
  48. Forster V. J., Nahari M. H., Martinez-Soria N., et al. The leukemia-associated RUNX1/ETO oncoprotein confers a mutator phenotype. Leukemia. 2016. Vol. 30, No. 1. P. 251–254. DOI: 10.1038/leu.2015.133.
  49. Grinev V. V., Ilyushonak I. M., Nakjang S., et al. Detection of the differential splicing events in transcriptome of human cells using next-generation sequencing. International congress on computer science: information systems and technologies : proc. of the Int. sci. congr. (Minsk, 24 –27 Oct., 2016). Minsk, 2016. P. 140 –144 (in Russ.).
  50. Ahn E.-Y., Yan M., Malakhova O. A., et al. Disruption of the NHR4 domain structure in AML1-ETO abrogates SON binding and promotes leukemogenesis. Proc. Natl. Acad. Sci. USA. 2008. Vol. 105, No. 44. P. 17103–17108. DOI: 10.1073/pnas.0802696105.
  51. Hickey C. J., Kim J.-H., Ahn E.-Y. New discoveries of old SON: a link between RNA splicing and cancer. J. Cell. Biochem. 2014. Vol. 115, No. 2. P. 224 –231. DOI: 10.1002/jcb.24672.
  52. Gao X. N., Yan F., Lin J., et al. AML1/ETO cooperates with HIF1α to promote leukemogenesis through DNMT3a transactivation. Leukemia. 2015. Vol. 29, No. 8. P. 1730 –1740. DOI: 10.1038/leu.2015.56.
  53. Lin S., Mulloy J. C., Goyama S. RUNX1-ETO Leukemia. RUNX proteins in development and cancer : advances in experimental medicine and biology. 2017. Vol. 962. P. 151–173. DOI: 10.1007/978-981-10-3233-2_11.
  54. Linggi B., Müller-Tidow C., van de Locht L., et al. The t(8;21) fusion protein, AML1-ETO, specifically represses the transcription of the p14 ARF tumor suppressor in acute myeloid leukemia. Nat. Med. 2002. Vol. 8, No. 7. P. 743–750. DOI: 10.1038/nm726.
  55. Müller-Tidow C., Steffen B., Cauvet T., et al. Translocation products in acute myeloid leukemia activate the wnt signaling pathway in hematopoietic cells. Mol. Cell. Biol. 2004. Vol. 24, issue 7. P. 2890 –2904.
  56. Chou F.-S., Griesinger A., Wunderlich M., et al. The thrombopoietin/MPL/Bcl-xL pathway is essential for survival and self-renewal in human preleukemia induced by AML1-ETO. Blood. 2012. Vol. 120, No. 4. P. 709 –719. DOI: 10.1182/blood-2012-01-403212.
  57. Krones-Herzig A., Mittal S., Yule K., et al. Early growth response 1 acts as a tumor suppressor in vivo and in vitro via regulation of p53. Cancer Res. 2005. Vol. 65, issue 12. P. 5133–5143. DOI: 10.1158/0008-5472.CAN-04-3742.
  58. Fu L., Huang W., Jing Y., et al. AML1-ETO triggers epigenetic activation of early growth response gene l, inducing apoptosis in t(8;21) acute myeloid leukemia. FEBS J. 2014. Vol. 281, issue 4. P. 1123–1131. DOI: 10.1111/febs.12673.
  59. Rhoades K. L., Hetherington C. J., Harakawa N., et al. Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood. 2000. Vol. 96, No. 6. P. 2108–2115.
  60. Yuan Y., Zhou L., Miyamoto T., et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc. Natl. Acad. Sci. USA. 2001. Vol. 98, No. 18. P. 10398 –10403. DOI: 10.1073/ pnas.171321298.
  61. Higuchi M., O’Brien D., Kumaravelu P., et al. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell. 2002. Vol. 1, No. 1. P. 63 –74.
  62. Mulloy J. C., Cammenga J., MacKenzie K. L., et al. The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood. 2002. Vol. 99, No. 1. P. 15–23.
  63. Mulloy J. C., Cammenga J., Berguido F. J., et al. Maintaining the self-renewal and differentiation potential of human CD34+ hematopoietic cells using a single genetic element. Blood. 2003. Vol. 102, No. 13. P. 4369 – 4376. DOI: 10.1182/blood-2003-05-1762.
  64. Shima T., Miyamoto T., Kikushige Y., et al. The ordered acquisition of Class II and Class I mutations directs formation of human t(8;21) acute myelogenous leukemia stem cell. Exp. Hematol. 2014. Vol. 42, issue 11. P. 955 – 965. Article number: e5. DOI: 10.1016/j.exphem.2014.07.267.
  65. Zhao S., Zhang Y., Sha K., et al. KRAS (G12D) Cooperates with AML1/ETO to initiate a mouse model mimicking human acute myeloid leukemia. Cell. Physiol. Biochem. 2014. Vol. 33, No. 1. P. 78 – 87. DOI: 10.1159/000356651.
  66. Hatlen M. A., Arora K., Vacic V., et al. Integrative genetic analysis of mouse and human AML identifies cooperating disease alleles. J. Exp. Med. 2016. Vol. 213, No. 1. P. 25–34. DOI: 10.1084/jem.20150524.
  67. Krauth M.-T., Eder C., Alpermann T., et al. High number of additional genetic lesions in acute myeloid leukemia with t(8;21)/ RUNX1-RUNX1T1: frequency and impact on clinical outcome. Leukemia. 2014. Vol. 28, No. 7. P. 1449 –1458. DOI: 10.1038/ leu.2014.4.
  68. Goyama S., Mulloy J. C. Molecular pathogenesis of core binding factor leukemia: current knowledge and future prospects. Int. J. Hematol. 2011. Vol. 94, issue 2. P. 126 –133. DOI: 10.1007/s12185-011-0858-z.
  69. Ben-Ami O., Friedman D., Leshkowitz D., et al. Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1. Cell Rep. 2013. Vol. 4, issue 6. P. 1131–1143. DOI: 10.1016/j.celrep.2013.08.020.
  70. Tang J.-L., Hou H.-A., Chen C.-Y., et al. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood. 2009. Vol. 114, No. 26. P. 5352–5361. DOI: 10.1182/ blood-2009-05-223784.
  71. Goyama S., Schibler J., Cunningham L., et al. Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. J. Clin. Invest. 2013. Vol. 123, No. 9. P. 3876 –3888. DOI: 10.1172/JCI68557.
  72. Ptasinska A., Assi S. A., Mannari D., et al. Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding. Leukemia. 2012. Vol. 26, No. 8. P. 1829 –1841. DOI: 10.1038/leu.2012.49.
  73. Ptasinska A., Assi S. A., Martinez-Soria N., et al. Identification of a dynamic core transcriptional network in t(8;21) AML that regulates differentiation block and self-renewal. Cell Rep. 2014. Vol. 8, issue 6. P. 1974 –1988. DOI: 10.1016/j.celrep.2014.08.024.
  74. Li Y., Wang H., Wang X., et al. Genome-wide studies identify a novel interplay between AML1 and AML1/ETO in t(8;21) acute myeloid leukemia. Blood. 2016. Vol. 127, No. 2. P. 233–242. DOI: 10.1182/blood-2015-03-626671.
  75. Jin W., Wu K., Li Y.-Z., et al. AML1-ETO targets and suppresses cathepsin G, a serine protease, which is able to degrade AML1-ETO in t(8;21) acute myeloid leukemia. Oncogene. 2013. Vol. 32, No. 15. P. 1978 –1987. DOI: 10.1038/onc.2012.204.
  76. Burel S. A., Harakawa N., Zhou L., et al. Dichotomy of AML1-ETO functions: growth arrest versus block of differentiation. Mol. Cell. Biol. 2001. Vol. 21, No. 16. P. 5577–5590. DOI: 10.1128/MCB.21.16.5577-5590.2001.
  77. Li X., Xu Y.-B., Wang Q., et al. Leukemogenic AML1-ETO fusion protein upregulates expression of connexin 43: The role in AML1-ETO-induced growth arrest in leukemic cells. J. Cell. Physiol. 2006. Vol. 208, issue 3. P. 594 – 601. DOI: 10.1002/ jcp.20695.
  78. Zhuang W.-Y., Cen J.-N., Zhao Y., et al. Epigenetic silencing of Bcl-2, CEBPA and p14ARF by the AML1-ETO oncoprotein contributing to growth arrest and differentiation block in the U937 cell line. Oncol. Rep. 2013. Vol. 30, issue 1. P. 185 –192. DOI: 10.3892/or.2013.2459.
  79. Wolyniec K., Wotton S., Kilbey A., et al. RUNX1 and its fusion oncoprotein derivative, RUNX1-ETO, induce senescence-like growth arrest independently of replicative stress. Oncogene. 2009. Vol. 28, issue 27. P. 2502–2512. DOI: 10.1038/onc.2009.101.
  80. Barbetti V., Tusa I., Cipolleschi M. G., et al. AML1/ETO sensitizes via TRAIL acute myeloid leukemia cells to the pro-apoptotic effects of hypoxia. Cell Death Dis. 2013. Vol. 4, No. 3. Article number: e536. DOI: 10.1038/cddis.2013.49.
  81. Spirin P. V., Lebedev T. D., Orlova N. N., et al. Silencing AML1-ETO gene expression leads to simultaneous activation of both pro-apoptotic and proliferation signaling. Leukemia. 2014. Vol. 28, No. 11. P. 2222–2228. DOI: 10.1038/leu.2014.130.
  82. Jacob F. Evolution and tinkering. Science. 1977. Vol. 196, issue 4295. P. 1161–1166. DOI: 10.1242/dmm.015974.
  83. Grove C. S., Vassilou G. S. Acute myeloid leukaemia: a paradigm for the clonal evolution of cancer?. Dis. Model. Mech. 2014. Vol. 7, No. 8. P. 941– 951. DOI: 10.1242/dmm.015974.
  84. Zuchovickaya E. V., Fiyas’ А. T. [Molecular mechanisms of leukemogenesis and challenges in acule leukemia treatment]. Grodno, 2015 (in Russ.).
  85. Kitamura T., Inoue D., Okochi-Watanabe N., et al. The molecular basis of myeloid malignancies. Proc. Jpn. Acad. Ser. B: Phys. Biol. Sci. 2014. Vol. 90, No. 10. P. 389 – 404. DOI: 10.2183/pjab.90.389.
  86. Biamonti G., Catillo M., Pignataro D., et al. The alternative splicing side of cancer : RNA biogenesis & TGFβ signalling in embryonic development. Semin. Cell Dev. Biol. 2014. Vol. 32. P. 30 –36. DOI: 10.1016/j.semcdb.2014.03.016.
  87. Grinev V. V., Ramanouskaya T. V., Gloushen S. V. Multidimensional control of cell structural robustness. Cell Biol. Int. 2013. Vol. 37, issue 10. P. 1023–1037. DOI: 10.1002/cbin.10128.
Published
2017-12-16
Keywords: acute myeloid leukemia, fusion oncogene RUNX1-RUNX1T1, the «two-hits» hypothesis
How to Cite
Ilyushonak, I. N., Saurytskaya, H. A., Yatskov, N. N., Skakun, V. V., & Grinev, V. V. (2017). Extending the «two-hits» hypothesis: the molecular mechanisms of RUNX1-RUNX1T1-mediated leuke mogenesis. Experimental Biology and Biotechnology, 2, 3-16. Retrieved from https://journals.bsu.by/index.php/biology/article/view/2439