Expression of GRP78 and GRP94 proteins in the human micro- and macrovascular endothelial cells under hypoxia

  • Tatyana O. Suhan Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Aleksandra S. Nevmerzhitskaya George Spaiher Institute of the Tumor Biotechnology and Experimental Therapy, P. Erlich Street, 42-44, 60596, Frankfurt-am-Main, Germany

Abstract

It was investigated the expression of stress activated chaperons GRP78, GRP94 in human microvascular and macrovascular endothelial cells in normoxic and hypoxic conditions of cultivations. The experiments were carried out on HUVEC (human umbilical vein endothelial cells), HDMEC (human dermal microvascular endothelial cells) and HMPEC (human microvascular placental endothelial cells). The proteins expression was estimated with immunoblotting. Densitometry of the immunoblotting results was done with «ImageJ» software. It was find out that in normoxic conditions pattern of GRP78 and GRP94 expression in HUVEC is similar to HDMEC and differs from HMPEC. Hypoxia changes expression of stress-induced proteins GRP78 and GRP94. Expression of GRP78 and GRP94 in microvascular endothelial cells (HDMEC, HMPEC) differs from expression in macrovascular endothelial cells (HUVEC). 

Author Biographies

Tatyana O. Suhan, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

PhD (biology); senior researcher at the scientific research laboratory of physiology at the department of human and animal physiology, faculty of biology

Aleksandra S. Nevmerzhitskaya, George Spaiher Institute of the Tumor Biotechnology and Experimental Therapy, P. Erlich Street, 42-44, 60596, Frankfurt-am-Main, Germany

research assistant

References

  1. Hochachka P. W. Defense strategies against hypoxia and hypothermia. Science. 1986. Vol. 231. P. 234 –241.
  2. Suarez R. K., Doll C. J., Buie A. E., et al. Turtles and rats: a biochemical comparison of anoxia-tolerant and anoxia-sensitive brains. Am. J. Physiol. 1989. Vol. 257. P. 1083–1088.
  3. Nilsson G. E., Alfaro A. A., Lutz P. L. Changes in turtle brain neurotransmitters and related substances during anoxia. Am. J. Physiol. 1990. Vol. 259. P. 376 –384.
  4. Lee S. L., Fanburg B. L. Glycolytic activity and enhancement of serotonin uptake by endothelial cells exposed to hypoxia / anoxia. Circ. Res. 1987. Vol. 60, No. 5. P. 653– 658. DOI: 10.1161/01.RES.60.5.653.
  5. Ogawa S., Gerlach H., Esposito C., et al. Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium. J. Clin. Invest. 1990. Vol. 85. P. 1090–1098. DOI: 10.1172/JCI114540.
  6. Kourembanas S., Marsden P. A., McQuillan L. P., et al. Hypoxia induces endothelin gene expression and secretion in cultured human endothelium. J. Clin. Invest. 1991. Vol. 88. P. 1054 –1057. DOI: 10.1172/JCI116604.
  7. Farber H. W., Rounds S. Effect of long-term hypoxia on cultured aortic and pulmonary arterial endothelial cells. Exp. Cell Res. 1990. Vol. 191. P. 27–36.
  8. Farber H. W., Barnett H. F. Differences in prostaglandin metabolism in cultured aortic and pulmonary arterial endothelial cells exposed to acute and chronic hypoxia. Circ. Res. 1991. Vol. 68. P. 1446 –1457. DOI: 10.1161/01.RES.68.5.1446.
  9. Zimmerman L. H., Levine R. A., Farber H. W. Hypoxia induces a specific set of stress proteins in cultured endothelial cells. J. Clin. Invest. 1991. Vol. 87. P. 908 – 914.
  10. Kreisberg J. I., Mills J. W., Jarrell J. A., et al. Protection of cultured renal tubular epithelial cells from anoxic cell swelling and cell death. Proc. Natl. Acad. Sci. 1981. Vol. 77. P. 5445–5447.
  11. Schwartz P., Piper H. M., Spahr R., et al. Ultrastructure of cultured adult myocardial cells during anoxia and reoxygenation. Am. J. Pathol. 1984. Vol. 115. P. 349 –361.
  12. Santoro M. G. Heat shock factors and the control of the stress response. Biochem. Pharmacol. 2000. Vol. 59, No. 1. P. 55– 63.
  13. Nollen E. A., Morimoto R. I. Chaperoning signaling pathways: molecular chaperones as stress-sensing «heat shock» proteins. J. Cell Sci. 2002. Vol. 115. P. 2809 –2816.
  14. Sangster T. A., Lindquist S., Queitsch C. Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays. 2004. Vol. 26. P. 348 –362. DOI: 10.1002/bies.20020.
  15. De Los Rio P., Ben-Zvi A., Slutsky O., et al. Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. Proc. Natl. Acad. Sci. USA. 2006. Vol. 103, No. 16. P. 6166 – 6172. DOI: 10.1073/pnas.0510496103.
  16. Floer M., Bryant G. O., Ptashne M. HSP90/70 chaperones are required for rapid nucleosome removal upon induction of the GAL genes of yeast. Proc. Natl. Acad. Sci. USA. 2008. Vol. 105, No. 8. P. 2975–2980. DOI: 10.1073/pnas.0800053105.
  17. Van P. N., Peter F., Söling H. D. Four intracisternal calcium-binding glycoproteins from rat liver microsomes with high affinity for calcium. No indication for calsequestrin-like proteins in inositol 1,4,5-trisphosphate-sensitive calcium sequestering rat liver vesicles. J. Biol. Chem. 1989. Vol. 264, No. 29. P. 17494 –17501.
  18. Laemmli U. K. Cleavage of Structural proteins during the assembly of the head of Bacteriophage T4. Nature. 1970. Vol. 227, issue 5259. P. 680 – 685. DOI: 10.1038/227680a0.
  19. Myatt L. Placental adaptive responses and fetal programming. J. Physiol. 2006. Vol. 572, No. 1. P. 25–30. DOI: 10.1113/ jphysiol.2006.104968.
  20. Wiernsperger N. F., Bouskela E. Microcirculation in insulin resistance and diabetes: more than just a complication. Diabetes Metab. 2003. Vol. 29, No. 4. P. 6S77–87. DOI: 10.1016/S1262-3636(03)72791-8.
  21. Ron D., Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 2007. Vol. 8. P. 519 –529. DOI: 10.1038/nrm2199.
  22. Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 2012. Vol. 13. P. 89 –102. DOI: 10.1038/nrm3270.
  23. Oslowski C. M., Urano F. Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol. 2011. Vol. 490. P. 71– 92. DOI: 10.1016/B978-0-12-385114-7.00004-0.
  24. Chakrabarti A., Chen A. W., Varner J. D. A Review of the Mammalian Unfolded Protein Response. Biotechnol. Bioeng. 2011. Vol. 108, No. 12. P. 2777–2793. DOI: 10.1002/bit.23282.
  25. Liu C. Y., Kaufman R. J. The unfolded protein response. J. Cell Sci. 2003. Vol. 116, No. 10. P. 1861–1862.
Published
2017-12-16
Keywords: endothelial cells, hypoxia, heat shock proteins
How to Cite
Suhan, T. O., & Nevmerzhitskaya, A. S. (2017). Expression of GRP78 and GRP94 proteins in the human micro- and macrovascular endothelial cells under hypoxia. Experimental Biology and Biotechnology, 2, 17-24. Retrieved from https://journals.bsu.by/index.php/biology/article/view/2440