Comparative study of electro physiological characteristics of identified dopamine-containing (R.Pe.D.1) and serotonin-containing (L.Pe.D.1) neurons within CNS of mollusc Lymnaea stagnalis

  • Mohamed Shahrani Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Alexander V. Sidorov Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

Abstract

Microelectrode technique was use to determine parameters of spontaneous electrical activity of two interneurons within lung respiration (R.Pe.D.1) and locomotion (L.Pe.D.1) neuronal networks of Lymnaea stagnalis. Significant differences were detect for rest potential value and spike frequency: –58.1 ± 3.3 mV and 0.91 ± 0.14 Hz (R.Pe.D.1); – 49.0 ± 2.8 mV and 1.45 ± 0.12 Hz (L.Pe.D.1). For R.Pe.D.1, а voltage-current curve shifts to the right or to the left at the negative and positive currents respectively in comparison with L.Pe.D.1 were determined. The increase of single action potentials duration was observe in L.Pe.D.1 in comparison with R.Pe.D.1: 3.6-time for depolarization phase, 1.5-time for repolarization phase and 1.2-time for undershoot. Amplitudes of action potentials and all its parts (threshold, undershoot) did not vary significantly. We suggest that peculiarities of electrical properties of membrane underlie functional specificity of identified neurons within Lymnaea’s CNS.

Author Biographies

Mohamed Shahrani, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

postgraduate student at the department of human and animal physiology, faculty of biology

Alexander V. Sidorov, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

doctor of science (biology), docent; professor at the department of human and animal physiology, faculty of biology

References

  1. Arvanitaki A., Chalazonitis N. Configuration modales de l’activité, propres à différents neurones d’un même centre. J. Physiol. (P.). 1958. Vol. 50. P. 122–125 (in Fr.).
  2. Kandel E. R. Cellular Basis of Behaviour. San Francisco : WH Freeman and Company, 1976.
  3. Benjamin P. R., Winlow W. The distribution of three wide-acting synaptic inputs to identified neurones in the isolated brain of Lymnaea stagnalis (L.). Comp. Biochem. Physiol. 1981. Vol. 70A. P. 293–307.
  4. McComb C., Meems R., Syed N., et al. Electrophysiological differences in the CPG aerial respiratory behavior between juvenile and adult Lymnaea. J. Neurophysiol. 2003. Vol. 90. P. 983–992.
  5. Sidorov A. V. Effect of acute temperature change on lung respiration of the mollusk Lymnaea stagnalis. J. Therm. Biol. 2005. Vol. 30, No. 2. P. 163–171.
  6. Spencer G. E., Kazmi M. H., Syed N. I., et al. Changes in the activity of a CPG neuron after the reinforcement of an operantly conditioned behavior in Lymnaea. J. Neurophysiol. 2002. Vol. 88. P. 1915–1923.
  7. Winlow W., Haydon P. G., Benjamin P. R. Multiple postsynaptic actions of the giant dopamine-containing neuron R.Pe.D.1 of Lymnaea stagnalis. J. Exp. Biol. 1981. Vol. 94. P. 137–148.
  8. Winlow W., Haydon P. G. A behavioral and neuronal analisis of the locomotory system of Lymnaea stagnalis. Comp. Biochem. Physiol. 1986. Vol. 83A. P. 13–21.
  9. Syed N. I., Bulloch A. G. M., Lukowiak K. In vitro reconstruction of the respiratory central pattern generator of the Mollusk Lymnaea. Science. 1990. Vol. 250. P. 282–285.
  10. Tsyganov V. V. Coordination of the activity of monoaminergic pedal neurons in fresh water snails. Ross. Fiziol. Zh. im I. M. Sechenova. 2000. Vol. 86. P. 369–378 (in Russ.).
  11. Soltanov V. V., Burko V. E. Computer programs for electrophysiological data-processing. News of Biomed. Sci. 2005. No. 1. P. 91–95 (in Russ.).
  12. Glantz S. Primer of Biostatistics. New York : McGraw-Hill, Inc., 1994.
  13. Harris-Warrick R. M. Voltage-sensitive ion channels in rhythmic motor systems. Curr. Opin. Neurobiol. 2002. Vol. 12. P. 646 – 651.
  14. Grillner S., Wallen P., Hill R., et al. Ion channels of importance for the locomotor pattern generation in the lamprey brainstem-spinal cord. J. Physiol. 2001. Vol. 533. P. 23–30.
  15. Sakakibara M., Okuda F., Nomura K., et al. Potassium currents in isolated statocyst neurons and RPeD1 in the pond snail, Lymnaea stagnalis. J. Neurophysiol. 2005. Vol. 94. P. 3884 –3892.
  16. Lu T. Z., Kostelecki W., Sun C. L. F., et al. High sensitivity of spontaneous spike frequency to sodium leak current in a Lymnaea pacemaker neuron. Eur. J. Neurosci. 2016. Vol. 44. P. 3011–3022.
  17. Senatore A., Monteil A., van Minnen J., et al. NALCN ion channels have alternative selectivity filters resembling calcium channels or sodium channels. PLoS One. 2013. Vol. 8. P. e55088.
  18. Grillner S. Biological pattern generation: the cellular and computational logic of networks in motion. Neuron. 2006. Vol. 52. P. 751–766.
  19. Sidorov A. V. Nerve centers functional activity in invertebrates. Minsk : BSU, 2011 (in Russ.).
  20. Syed N. I., Winlow W. Respiratory behavior in the pond snail Lymnaea stagnalis. II. Neural elements of the central pattern generator (CPG). J. Comp. Physiol. 1991. Vol. 169A. P. 557–568.
Published
2018-05-01
Keywords: rest potential, action potential, voltage-current curve, neuronal circuits, invertebrates
Supporting Agencies This work supported by State Program for Scientific Research «Fundamental and applied sciences for medicine» (task 1.08).
How to Cite
Shahrani, M., & Sidorov, A. V. (2018). Comparative study of electro physiological characteristics of identified dopamine-containing (R.Pe.D.1) and serotonin-containing (L.Pe.D.1) neurons within CNS of mollusc Lymnaea stagnalis. Experimental Biology and Biotechnology, 3, 3-9. Retrieved from https://journals.bsu.by/index.php/biology/article/view/2454