Time-course and amplitude characteristics of action potentials of identified Lymnaea stagnalis neurons under the hydrogen peroxide impact

  • Alexander V. Sidorov Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

Abstract

Microelectrode technique was used to determine the parameters of spontaneous spikes of two identified dopamine-containing (R.Pe.D.1) and serotonin-containing (L.Pe.D.1) neurons under the action of hydrogen peroxide. H2O2 (1 mmol/l) bath application on the surface of isolated CNS did not results in significant changes of time-course and amplitude characteristics of the neurons under study. Strengthening of H2O2 concentration (100 mmol/l) evoke the increase of action potential duration (de- and repolarization phases both) and decrease of spike, undershoot and threshold amplitudes in R.Pe.D.1. For L.Pe.D.1, the same trend was observing only for depolarisation phase duration, spike and threshold amplitudes. It is assume that peculiarities of electrical properties of membranes are due to the differences in the sensitivity of Na+- and K+- conductivity to reactive oxygen species. That state could underlie functional specificity of identified neurons within CNS of Lymnaea stagnalis and the diversity of neuronal response to the nervous tissue redox disbalance. 

Author Biography

Alexander V. Sidorov, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

doctor of science (biology), docent; professor at the department of human and animal physiology, faculty of biology

References

  1. Holmström K. M., Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signaling. Nat. Rev. Mol. Cell Biol. 2014. Vol. 6. P. 411– 421. DOI: 10.1038/nrm3801.
  2. Syková E., Nicholson C. Diffusion in brain extracellular space. Physiol. Rev. 2008. Vol. 88, issue 4. P. 1277–1340. DOI: 10.1152/physrev.00027.2007.
  3. Chen B. T., Avshalumov M. V., Rice M. E. H2O2 is a novel, endogenous modulator of synaptic dopamine release. J. Neurophysiol. 2001. Vol. 85, issue 6. P. 2468–2476. DOI: 10.1152/jn.2001.85.6.2468.
  4. Winlow W., Haydon P. G., Benjamin P. R. Multiple postsynaptic actions of the giant dopamine-containing neuron R.Pe.D.1 of Lymnaea stagnalis. J. Exp. Biol. 1981. Vol. 94. P. 137–148.
  5. Winlow W., Haydon P. G. A behavioral and neuronal analysis of the locomotory system of Lymnaea stagnalis. Comp. Biochem. Physiol. 1986. Vol. 83A. P. 13–21.
  6. Sidorov A. V. [Nerve centers functional activity in invertebrates]. Minsk : BSU, 2011 (in Russ.).
  7. Syed N. I., Bulloch A. G. M., Lukowiak K. In vitro reconstruction of the respiratory central pattern generator of the mollusk Lymnaea. Science. 1990. Vol. 250. P. 282–285.
  8. Tsyganov V. V. Coordination of the activity of monoaminergic pedal neurons in fresh water snails. Ross. Fiziol. Zh. im. I. M. Sechenova [Neurosci. Behav. Physiol.]. 2000. Vol. 86. P. 369–378 (in Russ.).
  9. Sidorov A. V. Effect of hydrogen peroxide on electrical activity of locomotory network neurons within mollusk Lymnaea stagnalis. News Biomed. Sci. 2009. No. 1/2. P. 25–30 (in Russ.).
  10. Soltanov V. V., Burko V. E. The software for processing of electrophysiological data. News Biomed. Sci. 2005. No. 1. P. 90 – 95 (in Russ.).
  11. Glantz S. A. Primer of Biostatistics. New York : McGraw-Hill, 1994.
  12. Hille B. Ionic channels of excitable membranes. Sunderland ; Massachusetts : Sinauer Associates, 1992.
  13. Kandel E. R. Cellular Basis of Behaviour. San Francisco : WH Freeman and Company, 1976.
  14. Shahrani M., Sidorov A. V. Comparative study of electrophysiological characteristics of identified dopamine-containing (R.Pe.D.1) and serotonin-containing (L.Pe.D.1) neurons within CNS of mollusc Lymnaea stagnalis. J. Belarus. State Univ. Biol. 2017. No. 3. P. 3–9 (in Russ.).
  15. Sakakibara M., Okuda F., Nomura K., et al. Potassium currents in isolated statocyst neurons and RPeD1 in the pond snail, Lymnaea stagnalis. J. Neurophysiol. 2005. Vol. 94, issue 6. P. 3884 –3892. DOI: 10.1152/jn.01163.2004. 16. Lu T. Z., Sun C. L. F., Dong N., et al. High sensitivity of spontaneous spike frequency to sodium leak current in a Lymnaea pacemaker neuron. Eur. J. Neurosci. 2016. Vol. 44, issue 12. P. 3011–3022. DOI: 10.1111/ejn.13426.
  16. Ueda A., Wu C.-F. Effects of Hyperkinetic, a beta subunit of Shaker voltage-dependent K+ channels, on the oxidation state of presynaptic nerve terminals. J. Neurogenet. 2008. Vol. 22, issue 2. P. 1–13. DOI: 10.1080/01677060701807954.
  17. Avshalumov M. V., Chen B. T., Koós T., et al. Endogenous hydrogen peroxide regulates the excitability of midbrain dopamine neurons via ATP-sensitive potassium channels. J. Neurosci. 2005. Vol. 25, issue 17. P. 4222– 4231. DOI: 10.1523/JNEUROSCI. 4701-04.2005.
  18. Bogeski I., Kappl R., Kummerow C., et al. Redox regulation of calcium ion channels: chemical and physiological aspects. Cell Calcium. 2011. Vol. 50, issue 5. P. 407– 423. DOI: 10.1016/j.ceca.2011.07.006.
  19. Dikkeboom R., Tijnagel J. M., Mulder E. C., et al. Hemocytes of the pond snail Lymnaea stagnalis generate reactive forms of oxygen. J. Invertebr. Pathol. 1987. Vol. 49. P. 321–331.
Published
2018-05-03
Keywords: rest potential, spike, reactive oxygen species, mollusc
Supporting Agencies This work supported by state programs for scientific Research «Convergence» (task 3.3.03.4) and «Fundamental and applied sciences for medicine» (task 1.08).
How to Cite
Sidorov, A. V. (2018). Time-course and amplitude characteristics of action potentials of identified Lymnaea stagnalis neurons under the hydrogen peroxide impact. Experimental Biology and Biotechnology, 1, 31-37. Retrieved from https://journals.bsu.by/index.php/biology/article/view/2484