Responces of identified cardioregulatory neurons within CNS of mollusc Lymnaea stagnalis at hyperglycemia and insulin action

  • Alexander V. Sidorov Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus https://orcid.org/0000-0002-1711-7868
  • Victoria N. Shadenko Republican Research and Practice Center for Mental Health, 152 Daŭhinaŭski Tract, Minsk 220053, Belarus
  • Victor B. Kazakevich Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

Abstract

Increase in haemolymph glucose level (from 0,09 (0,08; 0,10) to 0,54 (0,44; 0,69) mmol/L) and intracavitary injection of insulin (0,05 IU/g) results in 10 –20 % growth of heart rate in comparison with control group. Multidirectional effects of glucose (10 mmol/L) and insulin (0,2 IU) – 1,6-time increase and 2,3-time decrease of firing rate respectively, were observed in identified peptide-containing neurons V.D.1 and R.Pa.D.2. Both these substances initiate the appearance of synaptic inputs on the membrane of the R.Pa.D.1 neuron, being the evidence of the central cardioregulatory rhythm activation within CNS of Lymnaea. It is assumed that shifts of glucose level are involved in neuronal cardioregulation in molluscs.

Author Biographies

Alexander V. Sidorov, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

doctor of science (biology), full professor; professor at the department of human and animal physiology, faculty of biology

Victoria N. Shadenko, Republican Research and Practice Center for Mental Health, 152 Daŭhinaŭski Tract, Minsk 220053, Belarus

researcher at the laboratory of clinical and epidemiological research

Victor B. Kazakevich, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (biology), docent; associate professor at the department of human and animal physiology, faculty of biology

References

  1. Svensson E, Apergis-Schoute J, Burnstock G, Nusbaum MP, Parker D, Schiöth HB. General principles of neuronal co-transmission: insights from multiple model systems. Frontiers in Neural Circuits. 2018;12:117. DOI: 10.3389/fncir.2018.00117.
  2. Bilotta F, Lauretta MP, Tewari A, Haque M, Hara N, Uchino H, et al. Insulin and the brain: a sweet relationship with intensive care. Journal of Intensive Care Medicine. 2017;32(1):48–58. DOI: 10.1177/0885066615594341.
  3. Zhuravlev VL. [Mechanisms of neurohumoral control of gastropods heart]. Zhurnal evolyutsionnoi biokhimii i fiziologii. 1999; 35(2):65–77. Russian.
  4. Sidorov AV. Funktsional’naya aktivnost’ nervnykh tsentrov bespozvonochnykh [Nerve centers functional activity in invertebrates]. Minsk: Belarusian State University; 2011. 247 p. Russian.
  5. Veldhuijzen JP. Effects of different kinds of food, starvation and restart of feeding on the haemolymph-glucose of the pond snail Lymnaea stagnalis. Netherlands Journal of Zoology. 1975;25(1):89 –102. DOI: 10.1163/002829675X00146.
  6. Soltanov VV, Burko VE. [Computer programs for electrophysiological data-processing]. News of biomedical sciences. 2005; 1:91– 95. Russian.
  7. Shadenko VN, Sidorov AV. Induction of experimental hyperglycemia in mollusc Lymnaea stagnalis after animal’s incubation in high-concentrated glucose solution. Journal of the Belarusian State University. Biology. 2019;1:79 – 84. DOI: 10.33581/2521-17222019-1-79-84.
  8. Glantz S. Primer of Biostatistics. New York: McGraw-Hill, Inc.; 1994.
  9. Safonova TA, Zhuravlev VL, Nozdrachev AD. Kardiorespiratornaya sistema mollyuskov: struktura, funktsii, mekhanizmy regulyatsii [Cardiorespiratory system of molluscs: structure, functions, regulatory mechanisms]. Saint Petersburg: Publishing House of Saint Petersburg University; 2008. 244 p. Russian.
  10. Zhuravlev VL, Safonova TA, Kadyrova KK. [Synchronization of neuronal activity and heart beating in pond snail Lymnaea stagnalis]. Vestnik Leningradskogo gosudarstvennogo universiteta. Seriya 3. 1989;2:61– 68. Russian.
  11. Smit AB, Vreugenhil E, Ebberink RHM, Geraerts WPM, Klootwijk J, Joosse J. Growth-controlling molluscan neurons produce the precursor of an insulin-related peptide. Nature. 1988;331:535–538. DOI: 10.1038/331535a0.
  12. Kits KS, Bobeldijk RC, Crest M, Lodder JC. Glucose-induced excitation in molluscan central neurons producing insulin-related peptides. Pf lügers Archiv: European Journal of Physiology. 1991;417(6):597– 604. DOI: 10.1007/bf00372957.
  13. Bogerd J, Geraerts WP, Van Heerikhuizen H, Kerkhoven RM, Joosse J. Characterization and evolutionary aspects of a transcript encoding a neuropeptide precursor of Lymnaea neurons, VD1 and RPD2. Brain Research. Molecular Brain Research. 1991;11:47–54. DOI: 10.1016/0169-328x(91)90020-x.
  14. Buck LB, Bigelow JM, Axel R. Alternative splicing in individual Aplysia neurons generates neuropeptide diversity. Cell. 1987; 51(1):127–133. DOI: 10.1016/0092-8674(87)90017-1.
  15. Kerkhoven RM, Ramkema MD, Van Minnen J, Croll RP, Pin T, Boer HH. Neurons in a variety of molluscs react to antibodies raised against the VD1 / RPD2 a-neuropeptide of the pond snail Lymnaea stagnalis. Cell and Tissue Research. 1993;273(2):371–379. DOI: 10.1007/bf00312840.
  16. Kononenko NL, Zhukov VV. Neuroanatomical and immunocytochemical studies of the head retractor muscle innervation in the pond snail, Lymnaea stagnalis L. Zoology (Jena). 2005;108(3):217–237. DOI: 10.1016/j.zool.2005.04.003.
  17. Sidorov AV. Effect of hydrogen peroxide on electrical coupling between identified Lymnaea neurones. Invertebrate Neuroscience. 2012;12(1):63– 68. DOI: 10.1007/s10158-012-0128-7.
  18. Van Aardt WJ. Quantitative aspects of the water balance in Lymnaea stagnalis (L.). Netherlands Journal of Zoology. 1967; 18(3):253–312. DOI: 10.1163/002829668X00018.
  19. Sidorov AV, Kazakevich VB. Temperature dependence of the central regulation of cardiac activity of mollusk Lymnaea stagnalis. In: Ulaschyk VS, editor. Problemy regulyatsii vistseral’nykh funktsii. Kniga 1 [Problems of regulation of visceral functions. Book 1]. Minsk: RIVSh; 2008. p. 212–216. Russian.
  20. Sidorov AV, Kazakevich VB. Dependence of electric activity of motoneurons and locomotor behavior of Lymnaea stagnalis on environmental temperature. Journal of Evolutionary Biochemistry and Physiology. 2001;37(3):252–257. DOI:10.1023/A:1012667206908.
  21. Sidorov AV. Effects of temperature on respiration, defensive behavior and locomotion of fresh water snail Lymnaea stagnalis. Zhurnal vysshei nervnoi deyatel’nosti im. I. P. Pavlova. 2003;53(4):513–517. Russian.
Published
2019-11-01
Keywords: electrical activity; heart; glucose; insulin, electrical activity, heart, glucose, insulin
Supporting Agencies This research has been financially supported by the Belarusian Republican Foundation for Fundamental Research (project No. B07K-41) and also by State Program for Scientific Research «Convergence-2020» (task 3.10.2).
How to Cite
Sidorov, A. V., Shadenko, V. N., & Kazakevich, V. B. (2019). Responces of identified cardioregulatory neurons within CNS of mollusc Lymnaea stagnalis at hyperglycemia and insulin action. Experimental Biology and Biotechnology, 3, 49-58. https://doi.org/10.33581/2521-1722-2019-3-49-58