Influence of polyelectrolytes on increasing sensitivity of an immunofluorescent analysis based on plasmon silver nanoparticles

  • Irina V. Koktysh International Sakharov Environmental Institute, Belarusian State University, 23 Daŭhabrodskaja Street, 1 building, Minsk 220070, Belarus
  • Yanina I. Mel’nikova International Sakharov Environmental Institute, Belarusian State University, 23 Daŭhabrodskaja Street, 1 building, Minsk 220070, Belarus
  • Olga S. Kulakovich B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Niezaliežnasci Avenue, 2 building, Minsk 220072, Belarus
  • Andrei A. Ramanenka B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Niezaliežnasci Avenue, 2 building, Minsk 220072, Belarus
  • Sergey A. Maskevich International Sakharov Environmental Institute, Belarusian State University, 23 Daŭhabrodskaja Street, 1 building, Minsk 220070, Belarus

Abstract

It was studied the dependence of the interaction of the components of the immunofluorescence test system for the quantitative determination of prostate specific antigen based on plasmon silver nanoparticles on the physicochemical nature of various polyelectrolytes used to coat films of silver nanoparticles. It has been shown that the use of a weakly charged polycationic polyelectrolyte poly-L-lysine can increase the antigenic binding of the test system by 2.34 times, and the use of a highly charged polycationic polyelectrolyte polydiallyldimethylammonium chloride increases the binding affinity of prostatic specific antigen by 5 times. When developing various immunochemical test systems using films of silver nanoparticles, an important parameter is the choice of a polyelectrolyte for coating a silver nanolayer, since the physicochemical and electrostatic properties of the polyelectrolyte can significantly affect both the sorption capacity of the solid phase and the conformational state functional activity of immobilized protein molecules. Both specificity and sensitivity of the immunochemical test system, as well as the minimum possible detectable concentration of bioanalyte, largely depend on these parameters.

Author Biographies

Irina V. Koktysh, International Sakharov Environmental Institute, Belarusian State University, 23 Daŭhabrodskaja Street, 1 building, Minsk 220070, Belarus

PhD (biology); head of the laboratory of environmental biotechnology

Yanina I. Mel’nikova, International Sakharov Environmental Institute, Belarusian State University, 23 Daŭhabrodskaja Street, 1 building, Minsk 220070, Belarus

senior lecturer at the department of immunology, faculty of environmental medicine

Olga S. Kulakovich, B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Niezaliežnasci Avenue, 2 building, Minsk 220072, Belarus

PhD (chemistry); deputy head of the Nanophotonics Center

Andrei A. Ramanenka, B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Niezaliežnasci Avenue, 2 building, Minsk 220072, Belarus

researcher at the Nanophotonics Center

Sergey A. Maskevich, International Sakharov Environmental Institute, Belarusian State University, 23 Daŭhabrodskaja Street, 1 building, Minsk 220070, Belarus

doctor of science (physics and mathematics), full professor; director

References

  1. Akhvlediani ND, Allenov SN, Matyukhov IP. Prostate-specific antigen as a marker for prostate diseases and a target for drug therapy (literature review). Consilium Medicum. 2017;19(7):35–40. Russian. DOI: 10.26442/2075-1753_19.7.35-40.
  2. Descotes J-L. Diagnosis of prostate cancer. Asian Journal of Urology. 2019;6(2):129–136. DOI: 10.1016/j.ajur.2018.11.007.
  3. Filella X, Foj L. Novel biomarkers for prostate cancer detection and prognosis. In: Schatten H, editor. Cell & Molecular Biology of Prostate Cancer. Cham: Springer; 2018. p. 15–39. (Advances in experimental medicine and biology; volume 1095). DOI: 10.1007/978-3-319-95693-0_2.
  4. Filella X, Foj L. Prostate cancer detection and prognosis: from prostate specific antigen (PSA) to exosomal biomarkers. International Journal of Molecular Sciences. 2016;17(11):1784. DOI: 10.3390/ijms17111784.
  5. Solovov VA. Biology of prostate-specific antigen. Vestnik Samarskogo gosudarstvennogo universiteta. Estestvenno-nauchnaya seriya. 2005;39(5):200–208. Russian.
  6. Sidorenkov AV, Govorov AV, Sadchenko AV, Pushkar DYu. Diagnostic value of [-2]proPSA and PHI index (review of literature). Onkourologiya. 2014;10(4):87–95. Russian. DOI: 10.17650/1726-9776-2014-10-4-87-95.
  7. Wu D, Ni J, Beretov J, Cozzi P, Willcox M, Wasinger V, et al. Urinary biomarkers in prostate cancer detection and monitoring progression. Critical Reviews in Oncology/Hematology. 2017;118:15–26. DOI: 10.1016/j.critrevonc.2017.08.002.
  8. Salman JW, Schoots IG, Carlsson SV, Jenster G, Roobol MJ. Prostate specific antigen as a tumor marker in prostate cancer: biochemical and clinical aspects. Advances in Experimental Medicine and Biology. 2015;867:93–114. DOI: 10.1007/978-94-017-7215-0_7.
  9. Ponkratov SV, Kheyfets VKh, Kagan OF. Diagnostic value of prostate-specific antigen according to age patients. Urologicheskie vedomosti. 2016;6(3):30–39. Russian. DOI: 10.17816/uroved6330-39.
  10. Chibichyan MB, Chernogubova EA, Kogan MI. New biochemical markers of recurrence of prostate cancer after his treatment. Vestnik urologii. 2013;3:12–19. Russian. DOI: 10.21886/2308-6424-2013-0-3-12-19.
  11. Sivkov AV, Gurbanov ShSh, Keshishev NG, Efremov GD, Roshin DA. Extraprostatic sources of the prostate specific antigen. Eksperimental’naya i klinicheskaya urologiya. 2013;3:35–39. Russian.
  12. Kulakovich O, Strekal N, Artemyev M, Stupak A, Maskevich S, Gaponenko S. Improved method for fluorophore deposition atop a polyelectrolyte spacer for quantitative study of distance-dependent plasmon-assisted luminescence. Nanotechnology. 2006;17(20):5201–5206. DOI: 10.1088/0957-4484/17/20/026.
  13. Kulakovich OS, Strekal’ ND, Artem’ev MV, Stupak AP, Maskevich SA, Gaponenko SV. [Improved fluorescent assay sensitivity using silver island films: fluorescein isothiocyanate-labeled albumin as an example]. Zhurnal prikladnoi spektroskopii. 2006;73(6): 797–800. Russian.
  14. Guzatov DV, Vaschenko SV, Stankevich VV, Lunevich AY, Glukhov YF, Gaponenko SV. Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment. The Journal of Physical Chemistry. 2012;116(19):10723–10733. DOI: 10.1021/jp301598w.
  15. Ramanenka AA, Vaschenko SV, Stankevich VV, Lunevich AY, Glukhov YF, Gaponenko SV. Plasmonic enhancement of luminescence of conjugates of fluorescein isothiocyanate and human immunoglobulin. Zhurnal prikladnoi spektroskopii. 2014;81(2): 228–232. Russian.
  16. Strekal N, Maskevich A, Maskevich S, Jardillier JC, Nabiev I. Selective enhancement of Raman or fluorescence spectra of biomolecules using specifically annealed thick gold films. Biopolymers. 2000;57(6):325–328. DOI: 10.1002/1097-0282(2000)57:6<325::AID-BIP10>3.0.CO;2-7.
  17. McGeachy A, Dalchand N, Caudill ER, Li N, Dogangun M, Olenick L, et al. Interfacial electrostatics of poly(vinylamine hydrochloride), poly(diallyldimethylammonium chloride), poly-L-lysine, and poly-L-arginine interacting with lipid bilayers. Physical Chemistry Chemical Physics. 2018;20(16):10846–10856. DOI: 10.1039/c7cp07353d.
  18. Xu X, Angioletti-Uberti S, Lu Y, Dzubiella J, Ballauff M. Interaction of proteins with polyelectrolytes: a comparison between theory and experiment. Langmuir. 2019;35(16):5373–5391. DOI: 10.1021/acs.langmuir.8b01802.
  19. Wang X, Zheng K, Si Y, Guo X, Xu Yi. Protein – polyelectrolyte interaction: thermodynamic analysis based on the titration method. Polymers. 2019;11(1):82–100. DOI: 10.3390/polym11010082.
  20. Yesakova AS, Laptinskaya TV, Litmanovich EA. DLS study of diffusion of poly(diallyldimethylammonium chloride) in water solutions with added salt. Vestnik Moskovskogo universiteta. Seriya 3. Fizika. Astronomiya. 2010;2:50–56. Russian.
  21. Semenyuk P, Muronetz P. Protein interaction with charged macromolecules: from model polymers to unfolded proteins and post-translational modifications. International Journal of Molecular Sciences. 2019;20(5):1252. DOI: 10.3390/ijms20051252.
  22. Gao Sh, Holkar A, Srivastava S. Protein – polyelectrolyte complexes and micellar assemblies. Polymers. 2019;11(7):1097. DOI: 10.3390/polym11071097.
Published
2021-01-15
Keywords: fluorescence immunological analysis, polyelectrolytes, poly-L-lysine, polydiallyldimethylammonium chloride, fluorescein isothiocyanate, fluorescence, silver nanoparticles, plasmonics, prostate-specific antigen
Supporting Agencies The study was conducted within agreement of B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, with the Belarusian Republican Foundation for Fundamental Research No. F20PTI-004 dated 2020 May 4 (the project «Investigation of the mechanism of plasmon accumulation of photoluminescence in anisotropic nanostructures»).
How to Cite
Koktysh, I. V., Mel’nikova, Y. I., Kulakovich, O. S., Ramanenka, A. A., & Maskevich, S. A. (2021). Influence of polyelectrolytes on increasing sensitivity of an immunofluorescent analysis based on plasmon silver nanoparticles. Experimental Biology and Biotechnology, 3, 72-80. https://doi.org/10.33581/2521-1722-2020-3-72-80
Section
Biotechnology and Microbiology