Microsatellite markers in the study of polymorphism of domestic pig breeds (Sus scrofa domesticus)

  • Alina A. Rabtsava State Forensic Examination Committee of the Republic of Belarus, 43 Kaĺvaryjskaja Street, Minsk 220073, Belarus https://orcid.org/0000-0001-5550-9873
  • Sviatlana A. Kotava Scientific and Practical Center of the State Forensic Examination Committee of the Republic of Belarus, 25 Filimonava Street, Minsk 220114, Belarus
  • Alexandra Ya. Hrebianchuk Scientific and Practical Center of the State Forensic Examination Committee of the Republic of Belarus, 25 Filimonava Street, Minsk 220114, Belarus
  • Alla I. Gandzha Scientific and Practical Center of the National Academy of Sciences of Belarus on Animal Husbandry, 11 Frunze Street, Žodzina 222160, Belarus
  • Natallia V. Zhuryna Scientific and Practical Center of the National Academy of Sciences of Belarus on Animal Husbandry, 11 Frunze Street, Žodzina 222160, Belarus
  • Iosif S. Tsybovsky Scientific and Practical Center of the State Forensic Examination Committee of the Republic of Belarus, 25 Filimonava Street, Minsk 220114, Belarus; BelJurZabespjachjenne, 1B Dziaržynskaha Avenue, Minsk 220069, Belarus

Abstract

Using 13 tetra- and 7 dinucleotide microsatellites, we studied the polymorphism of 6 breeds of pigs - Belarusian large white (BLW), Belarusian meat (BM), Belarusian black motley (BBM), Landrace (LR), Yorkshire (YR) and Duroc (DR), which are bred in Belarus. A high level of genetic polymorphism is shown for all breeds, with the exception of the DR breed. For 6 breeds, a low level of inbreeding is shown. Alleles peculiar only to these breeds were found in the gene pools of all the studied breeds. This fact confirms the importance of preserving local breeds for maintaining polymorphism in domestic pigs as a whole. Estimation of genetic distances reveals a significant contribution of the commercial European breeds of Landrace and Yorkshire, however, the evolutionary paths of all three native breeds differ.

Author Biographies

Alina A. Rabtsava, State Forensic Examination Committee of the Republic of Belarus, 43 Kaĺvaryjskaja Street, Minsk 220073, Belarus

deputy head of the department of research and accounting of objects of animal origin and fibrous nature, department of genotyposcopic examination, general directorate of special examination, central office

Sviatlana A. Kotava, Scientific and Practical Center of the State Forensic Examination Committee of the Republic of Belarus, 25 Filimonava Street, Minsk 220114, Belarus

PhD (chemistry), leading researcher at the laboratory of molecular biological research

Alexandra Ya. Hrebianchuk, Scientific and Practical Center of the State Forensic Examination Committee of the Republic of Belarus, 25 Filimonava Street, Minsk 220114, Belarus

junior researcher at the laboratory of molecular biological research

Alla I. Gandzha, Scientific and Practical Center of the National Academy of Sciences of Belarus on Animal Husbandry, 11 Frunze Street, Žodzina 222160, Belarus

PhD (agricultural science), docent; head of the laboratory of molecular biotechnology and DNA testing

Natallia V. Zhuryna, Scientific and Practical Center of the National Academy of Sciences of Belarus on Animal Husbandry, 11 Frunze Street, Žodzina 222160, Belarus

PhD (agricultural science); leading researcher at the laboratory of molecular biotechnology and DNA testing

Iosif S. Tsybovsky, Scientific and Practical Center of the State Forensic Examination Committee of the Republic of Belarus, 25 Filimonava Street, Minsk 220114, Belarus; BelJurZabespjachjenne, 1B Dziaržynskaha Avenue, Minsk 220069, Belarus

PhD (biology); scientific supervisor at the laboratory of molecular biological research, Scientific and Practical Center of the State Forensic Examination Committee of the Republic of Belarus, and leading specialist, BelJurZabespjachjenne

References

  1. Dankvert SA, Kholmanov AM, Osadchaya OYu. Proizvodstvo myasa v mire [World meat production]. Moscow: Ekonomika; 2016. 495 p. (Zhivotnovodstvo stran mira). Russian.
  2. Sheiko IP, Smirnov VS, Sheiko RI. Svinovodstvo [Pig breeding]. Minsk: Information and Computing Center of the Ministry of Finance of the Republic of Belarus; 2013. 375 p. Russian.
  3. SanCristobal M, Chevalet C, Haley CS, Joosten R, Rattink AP, Harlizius B, et al. Genetic diversity within and between European pig breeds using microsatellite markers. Animal Genetics. 2006;37(3):189–198. DOI: 10.1111/j.1365-2052.2005.01385.x.
  4. Kim TH, Kim KS, Choi BH, Yoon DH, Jang GW, Lee KT, et al. Genetic structure of pig breeds from Korea and China using microsatellite loci analysis. Journal of Animal Science. 2005;83(10):2255–2263. DOI: 10.2527/2005.83102255x.
  5. Nidup K, Moran C. Genetic diversity of domestic pigs as revealed by microsatellites: a mini review. Genomics and Quantitative Genetics. 2011;2:5–18.
  6. Ollivier L. European pig genetic diversity: a minireview. Animal. 2009;3(7):915–924. DOI: 10.1017/S1751731109004297.
  7. Hulsegge I, Calus M, Hoving-Bolink R, Lopes M, Megens H-J, Oldenbroek K. Impact of merging commercial breeding lines on the genetic diversity of Landrace pigs. Genetics Selection Evolution. 2019;51:60. DOI: 10.1186/s12711-019-0502-6.
  8. Šalamon D, Margeta P, Klišanić V, Menčik S, Karolyi D, Mahnet Ž, et al. Genetic diversity of the Banija spotted pig breed using microsatellite markers. Journal of Central European Agriculture. 2019;20(1):36–42. DOI: 10.5513/JCEA01/20.1.2467.
  9. Caballero A, Toro MA. Analysis of genetic diversity for the management of conserved subdivided populations. Conservation Genetics. 2002;3(3):289–299. DOI: 10.1023/A:1019956205473.
  10. Stolpovskiy YuA, Zakharov-Gezekhus IA. The problem of conservation of gene pools of domesticated animals. Vavilov Journal of Genetics and Breeding. 2017;21(4):477–486. DOI: 10.18699/VJ17.266. Russian.
  11. Traspov A, Wenjiang Deng, Kostyunina O, Jiuxiu Ji, Shatokhin K, Lugovoy S, et al. Population structure and genome characterization of local pig breeds in Russia, Belorussia, Kazakhstan and Ukraine. Genetics Selection Evolution. 2016;48:16. DOI: 10.1186/ s12711-016-0196-y.
  12. Qiao R, Li X, Han X, Wang K, Lv G, Ren G, et al. Population structure and genetic diversity of four Henan pig populations. Animal Genetics. 2019;50(3):262–265. DOI: 10.1111/age.12775.
  13. Vrtková I, Stehlík L, Putnová L, Kratochvílová L, Falková L. Genetic structure in three breeds of pigs populations using microsatellite markers in the Czech Republic. Research in Pig Breeding. 2012;6(2):83–87.
  14. Gvozdanović K, Margeta V, Margeta P, Djurkin Kušec I, Galović D, Dovč P, et al. Genetic diversity of autochthonous pig breeds analyzed by microsatellite markers and mitochondrial DNA D-loop sequence polymorphism. Animal Biotechnology. 2019;30(3):242–251. DOI: 10.1080/10495398.2018.1478847.
  15. Kramarenko SS, Lugovoy SI, Kharzinova VR, Lykhach VY, Kramarenko AS, Lykhach AV. Genetic diversity of Ukrainian local pig breeds based on microsatellite markers. Regulatory Mechanisms in Biosystems. 2018;9(2):177–182. DOI: 10.15421/021826.
  16. Cherel P, Glénisson J, Pires J. Tetranucleotide microsatellites contribute to a highly discriminating parentage test panel in pig. Animal Genetics. 2011;42(6):659–661. DOI: 10.1111/j.1365-2052.2011.02187.x.
  17. Rohrer GA, Alexander LJ, Keele JW, Smith TP, Beattie CW. A microsatellite linkage map of the porcine genome. Genetics. 1994;136(1):231–245.
  18. Yaemmeeklin W, Jirasupphachok J, Koykul W, Suwattana D. Efficacy of microsatellite markers in parentage control in swine. The Thai Journal of Veterinary Medicine. 2009;39(3):259–265.
  19. Chen K, Knorr C, Bornemann-Kolatzki K, Ren J, Huang L, Rohrer GA, et al. Targeted oligonucleotide-mediated microsatellite identification (TOMMI) from large-insert library clones. BMC Genetics. 2005;6:54. DOI: 10.1186/1471-2156-6-54.
  20. Robic A, Dalens M, Woloszyn N, Milan D, Riquet J, Gellin J. Isolation of 28 new porcine microsatellites revealing polymorphism. Mammalian Genome. 1994;5(9):580–583. DOI: 10.1007/BF00354935.
  21. Alexander LJ, Troyer DL, Rohrer GA, Smith TPL, Schook LB, Beattie CW. Physical assignments of 68 porcine cosmid and lambda clones containing polymorphic microsatellites. Mammalian Genome. 1996;7(5):368–372. DOI: 10.1007/s003359900106.
  22. Rębała K, Rabtsava AA, Kotova SA, Kipen VN, Zhurina NV, Gandzha AI, et al. STR profiling for discrimination between wild and domestic swine specimens and between main breeds of domestic pigs reared in Belarus. Plos One. 2016;11(11):e0166563. DOI: 10.1371/journal.pone.0166563.
  23. Schneider S, Roessli D, Excoffier L. ARLEQUIN ver. 2.000: a software for population genetics data analysis. Geneva: Genetics and Biometry Laboratory, Department of Anthropology and Ecology, University of Geneva; 2000. 111 p.
  24. Marshall TC, Slate J, Kruuk LEB, Pemberton JM. Statistical confidence for likelihood‐based paternity inference in natural populations. Molecular Ecology. 1998;7(5):639–655. DOI: 10.1046/j.1365-294x.1998.00374.x.
  25. Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A. GENECLASS2: a software for genetic assignment and first-generation migrant detection. Journal of Heredity. 2004;95(6):536–539. DOI: 10.1093/jhered/esh074.
  26. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Montpellier: Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II; 2004.
  27. Peakall R, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular ecology notes. 2006;6(1):288–295. DOI: 10.1111/j.1471-8286.2005.01155.x.
  28. Rabtsava AA, Tsybovsky IS, Kotova SA. Microsatellite markers in the study of polymorphism of the wild boar (Sus scrofa) and domestic pig (Sus scrofa domesticus), inhabiting the territory of the Republic of Belarus. Molekulyarnaya i prikladnaya genetika. 2018;25:56–66. Russian.
  29. Takezaki N, Nei M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics. 1996; 144(1):389–399.
  30. Thuy NTD, Melchinger-Wild E, Kuss AW, Cuong NV, Bartenschlager H, Geldermann H. Comparison of Vietnamese and Euro pean pig breeds using microsatellites. Journal of Animal Science. 2006;84(10):2601–2608. DOI: 10.2527/jas.2005-641.
  31. Fan B, Wang Z-G, Li Y-J, Zhao X-L, Liu B, Zhao S-H, et al. Genetic variation analysis within and among Chinese indigenous swine populations using microsatellite markers. Animal Genetics. 2002;33(6):422–427. DOI: 10.1046/j.1365-2052.2002.00898.x.
  32. Chang WH, Chu HP, Jiang YN, Li SH, Wang Y, Chen CH, et al. Genetic variation and phylogenetics of Lanyu and exotic pig breeds in Taiwan analyzed by nineteen microsatellite markers. Journal of Animal Science. 2009;87(1):1–8. DOI: 10.2527/jas.2007-0562.
  33. Nei M. Genetic distance between populations. The American Naturalist. 1972;106(949):283–292.
  34. Gascuel O. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Molecular Biology and Evolution. 1997;14(7):685–695. DOI: 10.1093/oxfordjournals.molbev.a025808.
  35. Gil’man ZD. Svinovodstvo i tekhnologiya proizvodstva svininy [Pig breeding and pork production technology]. Minsk: Uradzhaj; 1995. 367 p. Russian.
Published
2021-06-28
Keywords: genetic polymorphism, microsatellites, domestic pig, breeds
How to Cite
Rabtsava, A. A., Kotava, S. A., Hrebianchuk, A. Y., Gandzha, A. I., Zhuryna, N. V., & Tsybovsky, I. S. (2021). Microsatellite markers in the study of polymorphism of domestic pig breeds (Sus scrofa domesticus). Experimental Biology and Biotechnology, 2, 74-83. https://doi.org/10.33581/2521-1722-2021-2-74-83
Section
Genetics and Molecular Biology