Evaluation of the efficiency of shikimate kinase inactivation in recombinational strains – producers of shikimic acid Вacillus subtilis 168wt21СSA and B. subtilis 5434p4SA

  • Chao Yu Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Elena O. Korik Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Aliaksei V. Lahodzich Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

Abstract

Prototrophic strains Вacillus subtilis 168wt and В. subtilis VKPM 5434 were transformed with recombinational constructs containing the fragment of shikimate kinase gene. The vector constructs were integrated into the bacterial chromosome of the transformed strains via homologous recombination resulting in recombinant strains B. subtilis 168wt21CSA and B. subtilis 5434p4SA. The differences between the obtained strains are due to the mechanism of the shikimate kinase gene inactivation: complete knockout with the construct pMTL21CΔaroK (strain B. subtilis 168wt21CSA) and conditional (IPTG-inducible) expression of shikimate kinase gene with the construct pMUTIN4ΔaroK (strain B. subtilis 5434p4SA). The morphophysiological and biochemical features of the strains В. subtilis 168wt21СSA and В. subtilis 5434p4SA were studied. For both strains under native conditions, the loss of prototrophic properties and the acquisition of ability to increase the synthesis of shikimic acid were noted. For the strain B. subtilis 5434p4SA, the effect of restoring prototrophic properties in some cells of the bacterial population was demonstrated upon activation of the expression of the shikimate kinase gene in the presence of IPTG. The dependence of the change in the number of cells with the activated shikimate kinase gene on the concentration of IPTG inductor in the medium was revealed. Using the HPLC method, we shown that mutant strains synthesise shikimic acid more efficiently than the corresponding parent strains: shikimic acid content in the culture medium can reach 564 µg/mL for the strain B. subtilis 168wt21СSA and 732 µg/mL for the strain B. subtilis 5434p4SA, i. e. more than 2.5 times exceed those for the original strains.

Author Biographies

Chao Yu, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

postgraduate student at the department of genetics, faculty of biology

Elena O. Korik, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

PhD (biology), docent; associate professor at the department of biochemistry, faculty of biology

Aliaksei V. Lahodzich, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

PhD (biology), docent; associate professor at the department of genetics, faculty of biology

References

  1. Bentley R, Haslam E. The shikimate pathway – a metabolic tree with many branche. Critical Reviews in Biochemistry and Molecular Biology. 1990;25(5):307–384. DOI: 10.3109/10409239009090615.
  2. Herrmann KM, Weaver LM. The shikimate pathway. Annual Review of Plant Physiology and Plant Molecular Biology. 1999;0:473–503. DOI: 10.1146/annurev.arplant.50.1.473.
  3. Humphrey CE, Furegati M, Laumen K, La Vecchia L, Leutert T, Müller-Hartwieg JCD, et al. Optimized synthesis of L-m-tyrosine suitable for chemical scale-up. Organic Process Research & Development. 2007;11(6):1069–1075. DOI: 10.1021/op700093y.
  4. Gilyarov MS, Baev AA, Vinberg GG, Zavarzin GA, Ivanov AV, Severin SE, et al., editors. Biologicheskii entsiklopedicheskii slovar’ [Biological encyclopedic dictionary]. Moscow: Sovetskaya entsiklopediya; 1986. 831 p. Russian.
  5. Meyskens FL Jr, Farmer P, Fruehauf JP. Redox regulation in human melanocytes and melanoma. Pigment Cell Research. 2001;14(3):148–154. DOI: 10.1034/j.1600-0749.2001.140303.x.
  6. Fang Ming-Yue, Zhang Chong, Yang Song, Cui Jin-Yu, Jiang Pei-Xia, Lou Kai, et al. High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Microbial Cell Factories. 2015;14:8. DOI: 10.1186/s12934-015-0192-x.
  7. Ul-Haq I, Ali S. Microbiological transformation of L-tyrosine to 3,4-dihydroxyphenyl L-alanine (L-dopa) by a mutant strain of Aspergillus oryzae UV-7. Current Microbiology. 2002;45(2):88–93. DOI: 10.1007/s00284-001-0080-y.
  8. Davis BD. Aromatic biosynthesis. I. The role of shikimic acid. Journal of Biological Chemistry. 1951;191(1):315–325. DOI: 10.1016/S0021-9258(18)50982-0.
  9. Dell KA, Frost JW. Identification and removal of impediments to biocatalytic synthesis of aromatics from D-glucose: rate-limiting enzymes in the common pathway of aromatic amino acid biosynthesis. Journal of the American Chemical Society. 1993;115(24):11581–11589. DOI: 10.1021/ja00077a065.
  10. Chandran SS, Yi J, Draths KM, von Daeniken R, Weber W, Frost JW. Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnology Progress. 2003;19(3):808–814. DOI: 10.1021/bp025769p.
  11. Weber C, Brückner C, Weinreb S, Lehr C, Essl C, Boles E. Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Applied and Environmental Microbiology. 2012;78(23):8421–8430. DOI: 10.1128/AEM.01983-12.
  12. Curran KA, Leavitt JM, Karim AS, Alper HS. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metabolic Engineering. 2013;15:55–66. DOI: 10.1016/j.ymben.2012.10.003.
  13. Wang S, Bilal M, Zong Y, Hu H, Wang W, Zhang X. Development of a plasmid-free biosynthetic pathway for enhanced muconic acid production in Pseudomonas chlororaphis HT66. ACS Synthetic Biology. 2018;7(4):1131–1142. DOI: 10.1021/acssynbio.8b00047.
  14. Liu Dong-Feng, Ai Guo-Min, Zheng Qing-Xiang, Liu Chang, Jiang Cheng-Ying, Liu Li-Xia, et al. Metabolic flux responses to genetic modification for shikimic acid production by Bacillus subtilis strains. Microbial Cell Factories. 2014;13:40. DOI: 10.1186/1475-2859-13-40.
  15. Chao Y, Shonina MY, Lahodzich AV. Design of the general concept of regulated inactivation of the gene shikimatkinase for modification of the shikimat way in bacteria Bacillus subtilis. Journal of the Belarusian State University. Biology. 2017;3:45–53. Russian.
  16. Bacillus subtilis subsp. subtilis str. 168 complete genome [Internet]. Bethesda: National Library of Medicine, National Center for Biomedical Information; 2023 [cited 2022 July 14]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NC_000964.3.
  17. UniProt [Internet]. [S. l.]: UniProt consortium; 2002–2023 [cited 2022 July 14]. Available from: https://www.uniprot.org/.
  18. Chambers SP, Prior SE, Barstow DA, Minton NP. The pMTL nic– cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene. 1988;68(1):139–149. DOI: 10.1016/0378-1119(88)90606-3.
  19. Chao Y, Lahodzich AV. Analysis of the efficiency factors of electrotransformation of Bacillus subtilis to inactivate the aroK gene by the method of homologous recombination. Journal of the Belarusian State University. Biology. 2021;2:64–73. DOI: 10.33581/2521-1722-2021-2-64-73.
  20. Vagner V, Dervyn E, Ehrlich SD. A vector for systematic gene inactivation in Bacillus subtilis. Microbiology. 1998;144(11):3097–3104. DOI: 10.1099/00221287-144-11-3097.
  21. Jiang JJ, Liu T, Lin SJ. [Research progress on the biosynthesis of aromatic compounds by microorganisms]. Chinese Bulletin of Life Sciences. 2019;31(5):430–448. Chinese.
  22. Spizizen J. Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. PNAS. 1958;44(10):1072–1078. DOI: 10.1073/pnas.44.10.1072.
  23. Guérout-Fleury A-M, Shazand K, Frandsen N, Stragier P. Antibiotic-resistance cassettes for Bacillus subtilis. Gene. 1995;167(1–2):335–336. DOI: 10.1016/0378-1119(95)00652-4.
  24. Lysak VV, Zheldakova RA, Fomina OV. Mikrobiologiya [Microbiology]. Minsk: Belarusian State University; 2015. 115 p. Russian.
  25. Bott KF, Wilson GA. Development of competence in the Bacillus subtilis transformation system. Journal of Bacteriology. 1967;94(3):562–570. DOI: 10.1128/jb.94.3.562-570.1967.
  26. Chen Fengli, Hou Kexin, Li Shuangyang, Zu Yuangang, Yang Lei. Extraction and chromatographic determination of shikimic acid in Chinese conifer needles with 1-benzyl-3-methylimidazolium bromide ionic liquid aqueous solutions. Journal of Analytical Methods in Chemistry. 2014:256473. DOI: 10.1155/2014/256473.
  27. Hanahan D. Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology. 1983;166(4):557–580. DOI: 10.1016/s0022-2836(83)80284-8.
  28. Altinyay Ç, Ergene Öz B, Altun ML. Quantification of shikimic acid in the methanolic extracts of three Alnus taxons growing in Turkey. Turkish Journal of Pharmaceutical Sciences. 2016;13(1):115–120.
Published
2023-06-26
Keywords: Bacillus subtilis, homologous recombination, inactivation of shikimate kinase, the metabolic pathway of shikimat, syntrophism test, IPTG inductor, Pspac promoter
How to Cite
Yu, C., Korik, E. O., & Lahodzich, A. V. (2023). Evaluation of the efficiency of shikimate kinase inactivation in recombinational strains – producers of shikimic acid Вacillus subtilis 168wt21СSA and B. subtilis 5434p4SA. Experimental Biology and Biotechnology, 2, 52-64. Retrieved from https://journals.bsu.by/index.php/biology/article/view/5533
Section
Biotechnology and Microbiology