Influence of seed priming with 5-aminolevulinic acid on adaptation of the photosynthetic apparatus of barley plants to soil drought

  • Tatsiana G. Kuryanchyk Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, 27 Akademichnaja Street, Minsk 220072, Belarus
  • Nikolay V. Kozel Peasant (farm) economy «Serebryanyj ruchej», Sasnovaja 222202, Aziarycka-Slabadski village council, Smaliavichy District, Minsk Region, Belarus

Abstract

It has been shown that seed priming with 5-aminolevulinic acid significantly affects the adaptation mechanisms of the photosynthetic apparatus of leaves of barley plants of the Avans variety under the influence of soil drought. Pre-treatment of seeds with 5-aminolevulinic acid under stress conditions reduces the accumulation of reactive oxygen species in leaves and has a stabilising effect on the pigment apparatus, maintaining a high β-carotene content. Priming of seeds with 5-aminolevulinic acid leads to an increase in the content of the protein Lhca2 of the light-harvesting complex of photosystem I against the background of the absence of a significant effect of 5-aminolevulinic acid on the content of photosystem II proteins both under drought conditions and under normal watering, which can contribute to the redistribution of the energy of absorbed light quanta in benefits photosystem I and is an effective protective mechanism that reduces photodamage to photosystem II under oxidative stress. Seed priming with 5-aminolevulinic acid stabilises the photochemical activity of barley leaf photosystems under drought conditions, while reducing the suppression of the regulated component of non-photochemical quenching of chlorophyll fluorescence as an important protective mechanism under stress.

Author Biographies

Tatsiana G. Kuryanchyk, Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, 27 Akademichnaja Street, Minsk 220072, Belarus

researcher at the laboratory of biophysics and biochemistry of plant cells

Nikolay V. Kozel, Peasant (farm) economy «Serebryanyj ruchej», Sasnovaja 222202, Aziarycka-Slabadski village council, Smaliavichy District, Minsk Region, Belarus

PhD (biology), docent; chief technologist

References

  1. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development. 2009;29(1):185–212. DOI: 10.1051/agro:2008021.
  2. Wang X, Gao Y, Wang Q, Chen M, Ye X, Li D, et al. 24-Epibrassinolide-alleviated drought stress damage influences antioxidant enzymes and autophagy changes in peach (Prunus persicae L.) leaves. Plant Physiology and Biochemistry. 2019;135:30–40. DOI: 10.1016/j.plaphy.2018.11.026.
  3. Noctor G, Reichheld J-P, Foyer CH. ROS-related redox regulation and signaling in plants. Seminars in Cell & Developmental Biology. 2018;80:3–12. DOI: 10.1016/j.semcdb.2017.07.013.
  4. Ashraf M, Harris PJC. Photosynthesis under stressful environments: an overview. Photosynthetica. 2013;51(2):163–190. DOI: 10.1007/s11099-013-0021-6.
  5. Bartels D, Sunkar R. Drought and salt tolerance in plants. Critical Reviews in Plant Sciences. 2005;24(1):23–58. DOI: 10.1080/07352680590910410.
  6. Chan Z, Shi H. Improved abiotic stress tolerance of bermudagrass by exogenous small molecules. Plant Signaling & Behavior. 2015;10(3):e991577. DOI: 10.4161/15592324.2014.991577.
  7. Яронская ЕБ, Балута ТВ, Коляго ВМ, Шалыго НВ. Влияние 5-аминолевулиновой кислоты на рост растений ячменя и содержание пигментов. В: Зорина ТЕ, редактор. Молекулярные, мембранные и клеточные основы функционирования биосис¬ тем. Международная научная конференция, Шестой съезд Белорусского общественного объединения фотобиологов и биофизиков; 6–8 октября 2004 г.; Минск, Беларусь. Часть 1. Минск: Редакционно-издательский центр Академии управления при Президенте Республики Беларусь; 2004. с. 117–119.
  8. Kuryanchyk TG, Kozel NV. Photosynthetic apparatus of barley plants treated with 5-aminolevulinic acid: mechanisms of adap¬ tation to drought. Experimental Biology and Biotechnology. 2022;3:26–38. Russian. DOI: 10.33581/2957-5060-2022-3-26-38.
  9. Прищепчик ЮВ, Аверина НГ. Влияние биопрайминга семян льна 5-аминолевулиновой кислотой на энергию прорастания и всхожесть. В: Волотовский ИД, редактор. Молекулярные, мембранные и клеточные основы функционирования биосистем. Международная научная конференция, Двенадцатый съезд Белорусского общественного объединения фотобиологов и биофизиков; 28–30 июня 2016 г.; Минск, Беларусь. Часть 2. Минск: Издательский центр БГУ; 2016. с. 76–79.
  10. Вязов ЕВ. Механизмы адаптации фотосинтетического аппарата и защитной системы растений огурца к свето¬ диодному излучению различного спектрального состава [диссертация]. Минск: [б. и.]; 2017. 157 с.
  11. Crow JP. Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide. 1997;1(2):145–157. DOI: 10.1006/niox.1996.0113.
  12. Kozel NV, Shalygo NV. Barley leaf antioxidant system under photooxidative stress induced by Rose Bengal. Fiziologiya rastenii. 2009;56(3):351–358. EDN: KAVKHB.
  13. Козел НВ. Фотоокислительные процессы, индуцированные в растениях ячменя и табака сенсибилизаторами ксантеновой природы [диссертация]. Минск: [б. и.]; 2009. 146 с.
  14. Mohanty JG, Jaffe JS, Schulman ES, Raible DG. A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. Journal of Immunological Methods. 1997;202(2):133–141. DOI: 10.1016/ s0022-1759(96)00244-x.
  15. Kaliaha TG, Kozel NV. The effect of soil drought on the content of photosynthetic pigments in barley plants of the Brovar va¬ riety. Journal of the Belarusian State University. Biology. 2020;3:46–53. Russian. DOI: 10.33581/2521-1722-2020-3-46-53.
  16. Azarin K, Usatov A, Makarenko M, Kozel N, Kovalevich A, Dremuk I, et al. A point mutation in the photosystem I P700 chlorophyll a apoprotein A1 gene confers variegation in Helianthus annuus L. Plant Molecular Biology. 2020;103(4–5):373–389. DOI: 10.1007/s11103-020-00997-x.
  17. Jansson S, Stefánsson H, Nyström U, Gustafsson P, Albertsson P-Å. Antenna protein composition of PS I and PS II in thylakoid sub-domains. Biochimica et Biophysica Acta (BBA) – Bioenergetics. 1997;1320(3):297–309. DOI: 10.1016/S0005-2728(97)00033-9.
  18. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976;72(1–2):248–254. DOI: 10.1006/abio.1976.9999.
  19. Dual-PAM-100 measuring system for simultaneous assessment of P700 and chlorophyll fluorescence. Instrument description and instructions for users. 2nd edition. Effeltrich: Heinz Walz; 2009. 87 p.
  20. Makarenko MS, Kozel NV, Usatov AV, Gorbachenko OF, Averina NG. A state of PS I and PS II photochemistry of sunflower yellow-green plastome mutant. Online Journal of Biological Sciences. 2016;16(4):193–196. DOI: 10.3844/ojbsci.2016.193.198.
  21. Kramer DM, Johnson G, Kiirats O, Edwards GE. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research. 2004;79(2):209–218. DOI: 10.1023/B:PRES.0000015391.99477.0d.
  22. Klughammer C, Schreiber U. An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta. 1994;192(2):261–268. DOI: 10.1007/BF01089043.
  23. Busch F, Hüner NPA, Ensminger I. Biochemical constrains limit the potential of the photochemical reflectance index as a predictor of effective quantum efficiency of photosynthesis during the winter spring transition in jack pine seedlings. Functional Plant Biology. 2009;36(11):1016–1026. DOI: 10.1071/FP08043.
  24. Latowski D, Kuczyńska P, Strzałka K. Xanthophyll cycle – a mechanism protecting plants against oxidative stress. Redox Report. 2011;16(2):78–90. DOI: 10.1179/174329211X13020951739938.
Published
2024-10-16
Keywords: soil drought, 5-aminolevulinic acid, seed priming, oxidative stress, reactive oxygen species, photosynthetic apparatus, barley
How to Cite
Kuryanchyk, T. G., & Kozel, N. V. (2024). Influence of seed priming with 5-aminolevulinic acid on adaptation of the photosynthetic apparatus of barley plants to soil drought. Experimental Biology and Biotechnology, 3, 10-21. Retrieved from https://journals.bsu.by/index.php/biology/article/view/6431
Section
Physiology and Сell Biology