Дрожжевые грибы как перспективные агенты биоконтроля микопатогенов винограда

  • Наталья Николаевна Волынчук Полесский государственный университет, ул. Днепровской флотилии, 23, 225710, г. Пинск, Брестская обл., Беларусь
  • Людмила Федоровна Кабашникова Институт биофизики и клеточной инженерии НАН Беларуси, ул. Академическая, 27, 220072, г. Минск, Беларусь

Аннотация

Из эписферы и эндосферы различных органов винограда культурного (Vitis vinifera L.) сорта Альфа были выделены 77 штаммов дрожжевых грибов, из которых 6 штаммов после вторичного скрининга проявляли антагонистическое действие по отношению к послеуборочным микопатогенам винограда Botrytis cinerea БИМ F-71 и Fusarium oxysporum БИМ F-609Г. Средний показатель ингибирования мицелия B. cinerea БИМ F-71 аборигенными дрожжевыми биоагентами составил 75,1 %, средний показатель ингибирования мицелия F. oxysporum БИМ F-609Г – 65,3 %. Анализ минимальной ингибирующей концентрации показал, что концентрация 105 КОЕ/мл достаточна для снижения развития обоих патогенов всеми штаммами дрожжевых грибов. Из исследованных механизмов антагонистического действия дрожжевых грибов присутствовал синтез уреазы, целлюлазы, амилазы и частично протеазы. Выработки летучих органических соединений немицелиальными грибами в отношении B. cinerea БИМ F-71 и F. oxysporum БИМ F-609Г не выявлено.

Биографии авторов

Наталья Николаевна Волынчук, Полесский государственный университет, ул. Днепровской флотилии, 23, 225710, г. Пинск, Брестская обл., Беларусь

аспирантка кафедры биотехнологии биотехнологического факультета. Научный руководитель – Л. Ф. Кабашникова

Людмила Федоровна Кабашникова, Институт биофизики и клеточной инженерии НАН Беларуси, ул. Академическая, 27, 220072, г. Минск, Беларусь

доктор биологических наук, член-корреспондент НАН Беларуси, доцент; заведующий лабораторией прикладной биофизики и биохимии

Литература

  1. Bokulich NA, Thorngate JH, Richardson PM, Mills DA. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proceedings of the National Academy of Sciences. 2014;111(1):139–148. DOI: 10.1073/pnas.1317377110.
  2. Yurchenko EG, Savchuk NV, Porotikova EV, Vinogradova SV. First report of grapevine (Vitis sp.) cluster blight caused by Fusarium proliferatum in Russia. Plant Disease. 2020;104(3):991. DOI: 10.1094/PDIS-05-19-0938-PDN.
  3. Yang Q, Diao J, Solairaj D, Ngea Guillaume Legrand N, Zhang H. Investigating possible mechanisms of Pichia caribbica induced with ascorbic acid against postharvest blue mold of apples. Biological Control. 2020;141:104129. DOI: 10.1016/j.biocontrol.2019.104129.
  4. Johnston PR, Seifert KA, Stone JK, Rossman AY, Marvanová L. Recommendations on generic names competing for use in Leotiomycetes (Ascomycota). IMA Fungus. 2014;5:91–120. DOI: 10.5598/imafungus.2014.05.01.11.
  5. Dalmais B, Schumacher J, Moraga J, Le Pêcheur P, Tudzynski B, Collado IG, et al. The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial. Molecular Plant Pathology. 2011;12(6):564–579. DOI: 10.1111/j.1364-3703.2010.00692.x.
  6. Yurchenko EG, Savchuk NV, Burovinskaya MV. Fusarium cluster blight of grapes: features of pathogenesis and harmfulness. Magarach. Vinogradarstvo i vinodelie. 2020;22(4):344–349. Russian.
  7. Yurchenko EG, Yakuba GV, Nasonov AI, Savchuk NV, Astapchuk IL, Burovinskaya MV. Screening analysis of native antagonist strains Trichoderma spp. for use in biotechnologies for the control of new diseases of apple and grapes in the Krasnodar Region. Scientific Works of North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-making. 2022;34:158–165. Russian. DOI: 10.30679/2587-9847-2022-34-158-165.
  8. Jamalizadeh M, Etebarian HR, Aminian H, Alizadeh A. A review of mechanisms of action of biological control organisms against post-harvest fruit spoilage. Bulletin OEPP. 2011;41(1):65–71. DOI: 10.1111/j.1365-2338.2011.02438.x.
  9. Spadaro D, Droby S. Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science & Technology. 2016;47:39–49. DOI: 10.1016/j.tifs.2015.11.003.
  10. Parafati L, Vitale A, Restuccia C, Cirvilleri G. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiology. 2015;47:85–92. DOI: 10.1016/j.fm.2014.11.013.
  11. Cordero-Bueso G, Mangieri N, Maghradze D, Foschino R, Valdetara F, Cantoral JM, et al. Wild grape-associated yeasts as promising biocontrol agents against Vitis vinifera fungal pathogens. Frontiers in Microbiology. 2017;8:2025. DOI: 10.3389/fmicb.2017.02025.
  12. Wisniewski M, Wilson C, Droby S, Chalutz E, El-Ghaouth A, Stevens C. Postharvest biocontrol: new concepts and applications. In: Vincent C, Goettel MS, Lazarovits G. Biological control: a global perspective. [S. l.]: CABI Books; 2007. p. 262–273. DOI: 10.1079/9781845932657.0262.
  13. Nally M, Pesce VM, Maturano YP, Muñoz CJ, Combina M, Toro ME. Biocontrol of Botrytis cinerea in table grapes by non-pathogenic indigenous Saccharomyces cerevisiae yeasts isolated from viticultural environments in Argentina. Postharvest Biology and Technology. 2012;64(1):40–48. DOI: 10.1016/j.postharvbio.2011.09.009.
  14. Sipiczki M, Pfliegler WP, Holb IJ. Metschnikowia species share a pool of diverse rRNA genes differing in regions that determine hairpin-loop structures and evolve by reticulation. PLOS ONE. 2013;8(6):e67384. DOI: 10.1371/journal.pone.0067384.
  15. Fernandez-San Millan А, Gamir J, Larraya L, Farran I, Veramendi J. Towards understanding of fungal biocontrol mechanisms of different yeasts antagonistic to Botrytis cinerea through exometabolomic analysis. Biological Control. 2022;174:105033. DOI: 10.1016/j.biocontrol.2022.105033.
  16. Hankin L, Anagnostakis SL. The use of solid media for detection of enzyme production by fungi. Mycologia. 1975;67(3):597–607. DOI: 10.1080/00275514.1975.12019782.
  17. Abe CAL, Faria CB, De Castro FF, De Souza SR, dos Santoset FC, dos Santos FC, et al. Fungi isolated from maize (Zea mays L.) grains and production of associated enzyme activities. International Journal of Molecular Sciences. 2015;16(7):15328–15346. DOI: 10.3390/ijms160715328.
  18. Hasan S, Ahmad A, Purwar A, Khan N, Kundan R, Gupta G. Production of extracellular enzymes in the entomopathogenic fungus Verticillium lecanii. Bioinformation. 2013;9(5):238–242. DOI: 10.6026/97320630009238.
  19. Seeliger HPR. Use of a urease test for the screening and identification of cryptococci. Journal of Bacteriology. 1956;72(2):127–131. DOI: 10.1128/jb.72.2.127-131.1956.
  20. Zhang H, Zheng X, Yu T. Biological control of postharvest diseases of peach with Cryptococcus laurentii. Food Control. 2007;18(4):287–291. DOI: 10.1016/j.foodcont.2005.10.007.
  21. Galli V, Romboli Y, Barbato D, Mari E, Venturi M, Guerrini S, et al. Indigenous Aureobasidium pullulans strains as biocontrol agents of Botrytis cinerea on grape berries. Sustainability. 2021;13(16):9389. DOI: 10.3390/su13169389.
  22. Ruiz-Moyano S, Martin A, Villalobos MC, Calle A, Serradilla MJ, Córdoba MG. Yeasts isolated from figs (Ficus carica L.) as biocontrol agents of postharvest fruit diseases. Food Microbiology. 2016;57:45–53. DOI: 10.1016/j.fm.2016.01.003.
  23. Pinto C, Custodio V, Nunes M, Songy A, Rabenoelina F, Courteaux B, et al. Understand the potential role of Aureobasidium pullulans, a resident microorganism from grapevine, to prevent the infection caused by Diplodia seriata. Frontiers in Microbiology. 2018;9:3047. DOI: 10.3389/fmicb.2018.03047.
  24. Bozoudi D, Tsaltas D. The multiple and versatile roles of Aureobasidium pullulans in the vitivinicultural sector. Fermentation. 2018;4(4):185–198. DOI: 10.3390/fermentation4040085.
  25. Sipiczki M. Overwintering of vineyard yeasts: survival of interacting yeast communities in grapes mummified on vines. Frontiers in Microbiology. 2016;7:212. DOI: 10.3389/fmicb.2016.00212.
Опубликован
2023-11-08
Ключевые слова: виноград, Botrytis, Fusarium, дрожжевые грибы, биоконтроль
Как цитировать
Волынчук, Н. Н., & Кабашникова, Л. Ф. (2023). Дрожжевые грибы как перспективные агенты биоконтроля микопатогенов винограда. Экспериментальная биология и биотехнология, 3, 24-33. Доступно по https://journals.bsu.by/index.php/biology/article/view/5657
Раздел
Физиология и клеточная биология