Наноструктурированный оксид цинка: роль физико-химических свойств в биологической активности и потенциальной цитотоксичности материала

  • Юлия Михайловна Гармаза Республиканский научно-практический центр трансфузиологии и медицинских биотехнологий, Долгиновский тракт, 160, 220053, г. Минск, Беларусь
  • Александр Владимирович Тамашевский Республиканский научно-практический центр трансфузиологии и медицинских биотехнологий, Долгиновский тракт, 160, 220053, г. Минск, Беларусь
  • Екатерина Ивановна Слобожанина Республиканский научно-практический центр трансфузиологии и медицинских биотехнологий, Долгиновский тракт, 160, 220053, г. Минск, Беларусь; Институт биофизики и клеточной инженерии НАН Беларуси, ул. Академическая, 27, 220072, г. Минск, Беларусь; Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Аннотация

За последние два десятилетия нанотехнологии стали представлять интерес не только для науки, но и для промышленности. Использование нанотехнологических подходов обеспечило возможность получения различных наночастиц и новых материалов на их основе со специфическими свойствами, отличными от свойств микроаналогов. К таким новым материалам можно отнести наноструктурированный оксид цинка, который нашел применение в биомедицинском секторе, включая биовизуализацию и адресную доставку лекарственных средств. Производство частиц в наноразмерном диапазоне позволило значительно увеличить активную площадь поверхности данного типа материалов в занимаемом объеме, что и привело к улучшению их химических, электрических, магнитных, структурных и (или) морфологических свойств. Однако в зависимости от способа проникновения в организм человека наночастицы могут перемещаться в различные органы и ткани, где способны вызывать побочные эффекты. Для проведения токсикологических исследований необходимо смоделировать in vitro взаимодействие между наночастицами и клеточными системами in vivo, а для возможности соотнесения любых токсических реакций с типом наночастиц требуется выяснить, в какой степени они способны адсорбироваться на клеточной поверхности и проникать внутрь клеток. Известно, что цитотоксичность наноструктурированного оксида цинка также может существенно зависеть от его физико-химических свойств, в частности от размера и формы частиц. По этой причине понимание взаимосвязи между цитотоксичностью и физико-химическими свойствами наночастиц представляется актуальным для объективной оценки возможных рисков от их воздействия. Таким образом, в настоящем обзоре рассмотрены основные механизмы воздействия наноматериалов на организм человека, роль их физико-химических свойств в биологической активности, а также вопросы потенциальной цитотоксичности наноструктурированного оксида цинка.

Биографии авторов

Юлия Михайловна Гармаза, Республиканский научно-практический центр трансфузиологии и медицинских биотехнологий, Долгиновский тракт, 160, 220053, г. Минск, Беларусь

кандидат биологических наук, доцент; ведущий научный сотрудник лаборатории биотехнологии антител и цитокинов

Александр Владимирович Тамашевский, Республиканский научно-практический центр трансфузиологии и медицинских биотехнологий, Долгиновский тракт, 160, 220053, г. Минск, Беларусь

кандидат биологических наук; докторант лаборатории биотехнологии антител и цитокинов

Екатерина Ивановна Слобожанина, Республиканский научно-практический центр трансфузиологии и медицинских биотехнологий, Долгиновский тракт, 160, 220053, г. Минск, Беларусь; Институт биофизики и клеточной инженерии НАН Беларуси, ул. Академическая, 27, 220072, г. Минск, Беларусь; Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

доктор биологических наук, член-корреспондент НАН Беларуси, профессор; главный научный сотрудник лаборатории производственной трансфузиологии Республиканского научно-практического центра трансфузиологии и медицинских биотехнологий, главный научный сотрудник лаборатории медицинской биофизики Института биофизики и клеточной инженерии НАН Беларуси, профессор кафедры биохимии биологического факультета Белорусского государственного университета

Литература

  1. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–627. DOI: 10.1126/ science.1114397.
  2. Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opinion on Drug Delivery. 2010;7(9):1063–1077. DOI: 10.1517/17425247.2010.502560.
  3. Wiesmann N, Tremel W, Brieger J. Zinc oxide nanoparticles for therapeutic purposes in cancer medicine. Journal of Materials Chemistry B. 2020;8(23):4973–4989. DOI: 10.1039/d0tb00739k.
  4. Czyżowska A, Barbasz A. A review: zinc oxide nanoparticles – friends or enemies? International Journal of Environmental Health Research. 2022;32(4):885–901. DOI: 10.1080/09603123.2020.1805415.
  5. Tamashevski A, Harmaza Y, Viter R, Jevdokimovs D, Poplausks R, Slobozhanina E, et al. Zinc oxide nanorod based immunosensing platform for the determination of human leukemic cells. Talanta. 2019;200:378–386. DOI: 10.1016/j.talanta.2019.03.064.
  6. Tamashevski A, Harmaza Y, Slobozhanina E, Viter R, Iatsunskyi I. Photoluminescent detection of human T-lymphoblastic cells by ZnO nanorods. Molecules. 2020;25(14):3168. DOI: 10.3390/molecules25143168.
  7. Yoshioka Y, Higashisaka K, Tsunoda S, Tsutsumi Y. The absorption, distribution, metabolism, and excretion profile of nanoparticles. In: Akashi M, Akagi T, Matsusaki M, editors. Engineered cell manipulation for biomedical application. Tokyo: Springer; 2014. p. 259–271 (Zucolotto V, editor. Nanomedicine and nanotoxicology). DOI: 10.1007/978-4-431-55139-3_15.
  8. Martirosyan A, Schneider Y-J. Engineered nanomaterials in food: implications for food safety and consumer health. International Journal of Environmental Research and Public Health. 2014;11(6):5720–5750. DOI: 10.3390/ijerph110605720.
  9. Keerthana S, Kumar A. Potential risks and benefits of zinc oxide nanoparticles: a systematic review. Critical Reviews in Toxicology. 2020;50(1):47–71. DOI: 10.1080/10408444.2020.1726282.
  10. Boyes WK, van Thriel C. Neurotoxicology of nanomaterials. Chemical Research in Toxicology. 2020;33(5):1121–1144. DOI: 10.1021/acs.chemrestox.0c00050.
  11. Hoet PHM, Brüske-Hohlfeld I, Salata OV. Nanoparticles – known and unknown health risks. Journal of Nanobiotechnology. 2004;2:12. DOI: 10.1186/1477-3155-2-12.
  12. Patel S, Kim J, Herrera M, Mukherjee A, Kabanov AV, Sahay G. Brief update on endocytosis of nanomedicines. Advanced Drug Delivery Reviews. 2019;144:90–111. DOI: 10.1016/j.addr.2019.08.004.
  13. Chen W, D’Argenio DZ, Sipos A, Kim K-J, Crandall ED. Biokinetic modeling of nanoparticle interactions with lung alveolar epithelial cells: uptake, intracellular processing, and egress. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 2021;320(1):R36–R43. DOI: 10.1152/ajpregu.00184.2020.
  14. Means N, Elechalawar CK, Chen WR, Bhattacharya R, Mukherjee P. Revealing macropinocytosis using nanoparticles. Molecular Aspects of Medicine. 2022;83:100993. DOI: 10.1016/j.mam.2021.100993.
  15. Shende P, Wakade VS. Biointerface: a nano-modulated way for biological transportation. Journal of Drug Targeting. 2020; 28(5):456–467. DOI: 10.1080/1061186X.2020.1720218.
  16. Landsiedel R, Honarvar N, Seiffert SB, Oesch B, Oesch F. Genotoxicity testing of nanomaterials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2022;14(6):e1833. DOI: 10.1002/wnan.1833.
  17. Yao Yongshuai, Zhang Ting, Tang Meng. The DNA damage potential of quantum dots: toxicity, mechanism and challenge. Environmental Pollution. 2023;317:120676. DOI: 10.1016/j.envpol.2022.120676.
  18. Mandal P, Ghosh SK. Graphene-based nanomaterials and their interactions with lipid membranes. Langmuir. 2023;39(51): 18713–18729. DOI: 10.1021/acs.langmuir.3c02805.
  19. Harmaza YM, Tamashevski AV, Slobozhanina EI. Membrane effects of zinc oxide nanorods and nanoparticles in human lymphocytes. Doklady of the National Academy of Sciences of Belarus. 2019;63(1):72–78. Russian. DOI: 10.29235/1561-8323-2019-63-1-72-78.
  20. Wu Daming, Ma Ying, Cao Yuna, Zhang Ting. Mitochondrial toxicity of nanomaterials. Science of the Total Environment. 2020;702:134994. DOI: 10.1016/j.scitotenv.2019.134994.
  21. Aljabali AA, Obeid MA, Bashatwah RM, Serrano-Aroca Á, Mishra V, Mishra Y, et al. Nanomaterials and their impact on the immune system. International Journal of Molecular Sciences. 2023;24(3):2008. DOI: 10.3390/ijms24032008.
  22. Mukherjee B, Maji R, Roychowdhury S, Ghosh S. Toxicological concerns of engineered nanosize drug delivery systems. American Journal of Therapeutics. 2016;23(1):e139–e150. DOI: 10.1097/01.mjt.0000433947.16654.75.
  23. Domb AJ, Sharifzadeh G, Nahum V, Hosseinkhani H. Safety evaluation of nanotechnology products. Pharmaceutics. 2021; 13(10):1615. DOI: 10.3390/pharmaceutics13101615.
  24. Sayes CM, Warheit DB. Characterization of nanomaterials for toxicity assessment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2009;1(6):660–670. DOI: 10.1002/wnan.58.
  25. Sabourian P, Yazdani G, Ashraf SS, Frounchi M, Mashayekhan S, Kiani S, et al. Effect of physico-chemical properties of nanoparticles on their intracellular uptake. International Journal of Molecular Sciences. 2020;21(21):8019. DOI: 10.3390/ijms21218019.
  26. Harmaza YM, Tamashevski AV, Slobozhanina EI. Molecular nature of cytotoxicity of zinc oxide nanostructures. Doklady of the National Academy of Sciences of Belarus. 2020;64(4):448–456. Russian. DOI: 10.29235/1561-8323-2020-64-4-448-456.
  27. Zielińska A, Costa B, Ferreira MV, Miguéis D, Louros JMS, Durazzo A, et al. Nanotoxicology and nanosafety: safety-by-design and testing at a glance. International Journal of Environmental Research and Public Health. 2020;17(13):4657. DOI: 10.3390/ ijerph17134657.
  28. Verma HK, Vij M, Maurya KK. Synthesis, characterization and sun light-driven photocatalytic activity of zinc oxide nanostructures. Journal of Nanoscience and Nanotechnology. 2020;20(6):3683–3692. DOI: 10.1166/jnn.2020.17679.
  29. Jha S, Rani R, Singh S. Biogenic zinc oxide nanoparticles and their biomedical applications: a review. Journal of Inorganic and Organometallic Polymers and Materials. 2023;33(6):1437–1452. DOI: 10.1007/s10904-023-02550-x.
  30. Yi Caixia, Yu Zhihai, Ren Qian, Liu Xian, Wang Yan, Sun Xin, et al. Nanoscale ZnO-based photosensitizers for photodynamic therapy. Photodiagnosis and Photodynamic Therapy. 2020;30:101694. DOI: 10.1016/j.pdpdt.2020.101694.
  31. Li Jingyuan, Guo Dadong, Wang Xuemei, Wang Huangping, Jiang Hui, Chen Baoan. The photodynamic effect of different size ZnO nanoparticles on cancer cell proliferation in vitro. Nanoscale Research Letters. 2010;5(6):1063–1071. DOI: 10.1007/s11671-010- 9603-4.
  32. Fujihara J, Nishimoto N. Review of zinc oxide nanoparticles: toxicokinetics, tissue distribution for various exposure routes, toxicological effects, toxicity mechanism in mammals, and an approach for toxicity reduction. Biological Trace Element Research. 2024;202(1):9–23. DOI: 10.1007/s12011-023-03644-w.
  33. Akhtar MJ, Ahamed M, Kumar S, Khan MM, Ahmad J, Alrokayan SA. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. International Journal of Nanomedicine. 2012;7:845–857. DOI: 10.2147/IJN. S29129.
  34. Andersson-Willman B, Gehrmann U, Cansu Z, Buerki-Thurnherr T, Krug HF, Gabrielsson S, et al. Effects of subtoxic concentrations of TiO 2 and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production. Toxicology and Applied Pharmacology. 2012;264(1):94–103. DOI: 10.1016/j.taap.2012.07.021.
  35. Lovén K, Dobric J, Bölükbas DA, Kåredal M, Tas S, Rissler J, et al. Toxicological effects of zinc oxide nanoparticle exposure: an in vitro comparison between dry aerosol air – liquid interface and submerged exposure systems. Nanotoxicology. 2021;15(4): 494–510. DOI: 10.1080/17435390.2021.1884301.
  36. Everett WN, Chern C, Sun D, McMahon RE, Zhang X, Chen WJA, et al. Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates. Toxicology Letters. 2014;225(1):177–184. DOI: 10.1016/j.toxlet.2013.12.005.
  37. Bardhan M, Mandal G, Ganguly T. Steady state, time resolved, and circular dichroism spectroscopic studies to reveal the nature of interactions of zinc oxide nanoparticles with transport protein bovine serum albumin and to monitor the possible protein conformational changes. Journal of Applied Physics. 2009;106(3):034701. DOI: 10.1063/1.3190483.
  38. Babayevska N, Przysiecka Ł, Iatsunskyi I, Nowaczyk G, Jarek M, Janiszewska E, et al. ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Scientific Reports. 2022;12:8148. DOI: 10.1038/s41598-022-12134-3.
  39. Song Wenhua, Zhang Jinyang, Guo Jing, Zhang Jinhua, Ding Feng, Li Liying, et al. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicology Letters. 2010;199(3):389–397. DOI: 10.1016/j.toxlet.2010.10.003.
  40. Li Xianqiang, Fang Xin, Ding Yanhuai, Li Juan, Cao Yi. Toxicity of ZnO nanoparticles (NPs) with or without hydrophobic surface coating to THP-1 macrophages: interactions with BSA or oleate-BSA. Toxicology Mechanisms and Methods. 2018;28(7):520–528. DOI: 10.1080/15376516.2018.1469708.
  41. Bengalli R, Gualtieri M, Capasso L, Urani C, Camatini M. Impact of zinc oxide nanoparticles on an in vitro model of the human air-blood barrier. Toxicology Letters. 2017;279:22–32. DOI: 10.1016/j.toxlet.2017.07.877.
  42. Xie Y, Williams NG, Tolic A, Chrisler WB, Teeguarden JG, Maddux BLS, et al. Aerosolized ZnO nanoparticles induce toxicity in alveolar type II epithelial cells at the air – liquid interface. Toxicological Sciences. 2012;125(2):450–461. DOI: 10.1093/toxsci/kfr251.
  43. Mihai C, Chrisler WB, Xie Y, Hu D, Szymanski CJ, Tolic A, et al. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air – liquid interface. Nanotoxicology. 2015;9(1):9–22. DOI: 10.3109/17435390.2013.859319.
  44. Pei Xingyao, Jiang Haiyang, Xu Gang, Li Cun, Li Daowen, Tang Shusheng. Lethality of zinc oxide nanoparticles surpasses conventional zinc oxide via oxidative stress, mitochondrial damage and calcium overload: a comparative hepatotoxicity study. International Journal of Molecular Sciences. 2022;23(12):6724. DOI: 10.3390/ijms23126724.
  45. Harmaza YM, Tamashevski AV, Slobozhanina EI. The role of metallothioneins in maintenance of zinc homeostasis and redox state in erythrocytes of cardiologic patients with metabolic syndrome. Journal of Integrated OMICS. 2019;9(1):260. DOI: 10.5584/ jiomics.v9i1.260.
  46. James SA, Feltis BN, de Jonge MD, Sridhar M, Kimpton JA, Altissimo M, et al. Quantification of ZnO nanoparticle uptake, distribution, and dissolution within individual human macrophages. ACS Nano. 2013;7(12):10621–10635. DOI: 10.1021/nn403118u.
  47. Iavicoli I, Fontana L, Nordberg G. The effects of nanoparticles on the renal system. Critical Reviews in Toxicology. 2016;46(6): 490–560. DOI: 10.1080/10408444.2016.1181047.
  48. Shen C, James SA, de Jonge MD, Turney TW, Wright PFA, Feltis BN. Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. Toxicological Sciences. 2013;136(1):120–130. DOI: 10.1093/toxsci/kft187.
  49. Tuomela S, Autio R, Buerki-Thurnherr T, Arslan O, Kunzmann A, Andersson-Willman B, et al. Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles. PLoS One. 2013;8(7):e68415. DOI: 10.1371/journal.pone.0068415.
  50. Elfsmark L, Ekstrand-Hammarström B, Forsgren N, Lejon C, Hägglund L, Wingfors H. Characterization of toxicological effects of complex nano-sized metal particles using in vitro human cell and whole blood model systems. Journal of Applied Toxicology. 2022;42(2):203–215. DOI: 10.1002/jat.4202.
  51. Sasidharan A, Chandran P, Menon D, Raman S, Nair S, Koyakutty M. Rapid dissolution of ZnO nanocrystals in acidic cancer microenvironment leading to preferential apoptosis. Nanoscale. 2011;3(9):3657–3669. DOI: 10.1039/c1nr10272a.
  52. Mu Yunsong, Wu Fengchang, Zhao Qing, Ji Rong, Qie Yu, Zhou Yue, et al. Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs. Nanotoxicology. 2016;10(9):1207–1214. DOI: 10.1080/17435390.2016.1202352.
  53. Hsiao I-Lun, Huang Yuh-Jeen. Titanium oxide shell coatings decrease the cytotoxicity of ZnO nanoparticles. Chemical Research in Toxicology. 2011;24(3):303–313. DOI: 10.1021/tx1001892.
  54. Luo M, Shen C, Feltis BN, Martin LL, Hughes AE, Wright PFA, et al. Reducing ZnO nanoparticle cytotoxicity by surface modification. Nanoscale. 2014;6(11):5791–5798. DOI: 10.1039/c4nr00458b.
  55. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008;2(10):2121–2134. DOI: 10.1021/ nn800511k.
  56. Heng BC, Zhao X, Xiong S, Ng KW, Boey FYC, Loo JSC. Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial epithelial cells (BEAS-2B) is accentuated by oxidative stress. Food and Chemical Toxicology. 2010;48(6):1762–1766. DOI: 10.1016/j. fct.2010.04.023.
  57. Saptarshi SR, Feltis BN, Wright PFA, Lopata AL. Investigating the immunomodulatory nature of zinc oxide nanoparticles at sub-cytotoxic levels in vitro and after intranasal instillation in vivo. Journal of Nanobiotechnology. 2015;13:6. DOI: 10.1186/s12951- 015-0067-7.
  58. Shi J, Karlsson HL, Johansson K, Gogvadze V, Xiao L, Li J, et al. Microsomal glutathione transferase 1 protects against toxicity induced by silica nanoparticles but not by zinc oxide nanoparticles. ACS Nano. 2012;6(3):1925–1938. DOI: 10.1021/nn2021056.
  59. Kao Yi-Yun, Chen Yi-Chun, Cheng Tsun-Jen, Chiung Yin-Mei, Liu Pei-Shan. Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicological Sciences. 2012;125(2):462–472. DOI: 10.1093/toxsci/kfr319.
  60. Sharma V, Anderson D, Dhawan A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis. 2012;17(8):852–870. DOI: 10.1007/s10495-012-0705-6.
  61. Meyer K, Rajanahalli P, Ahamed M, Rowe JJ, Hong Y. ZnO nanoparticles induce apoptosis in human dermal fibroblasts via p53 and p38 pathways. Toxicology in Vitro. 2011;25(8):1721–1726. DOI: 10.1016/j.tiv.2011.08.011.
  62. Guo Dadong, Bi Hongsheng, Liu Bing, Wu Qiuxin, Wang Daoguang, Cui Yan. Reactive oxygen species-induced cytotoxic effects of zinc oxide nanoparticles in rat retinal ganglion cells. Toxicology in Vitro. 2013;27(2):731–738. DOI: 10.1016/j.tiv.2012.12.001.
  63. Wilhelmi V, Fischer U, Weighardt H, Schulze-Osthoff K, Nickel C, Stahlmecke B, et al. Zinc oxide nanoparticles induce necrosis and apoptosis in macrophages in a p47phox- and Nrf2-independent manner. PLoS One. 2013;8(6):e65704. DOI: 10.1371/journal. pone.0065704.
  64. Wang Jieting, Deng Xiaobei, Zhang Fang, Chen Deliang, Ding Wenjun. ZnO nanoparticle-induced oxidative stress triggers apoptosis by activating JNK signaling pathway in cultured primary astrocytes. Nanoscale Research Letters. 2014;9:117. DOI: 10.1186/ 1556-276X-9-117.
  65. Uzhytchak M, Smolková B, Lunova M, Frtús A, Jirsa M, Dejneka A, et al. Lysosomal nanotoxicity: impact of nanomedicines on lysosomal function. Advanced Drug Delivery Reviews. 2023;197:114828. DOI: 10.1016/j.addr.2023.114828.
  66. Kim Boyun, Kim Gaeun, Jeon Soyeon, Cho Wan-Seob, Jeon Hyun Pyo, Jung Jewon. Zinc oxide nanoparticles trigger autophagy-mediated cell death through activating lysosomal TRPML1 in normal kidney cells. Toxicology Reports. 2023;10:529–536. DOI: 10.1016/j.toxrep.2023.04.012.
  67. Buerki-Thurnherr T, Xiao L, Diener L, Arslan O, Hirsch C, Maeder-Althaus X, et al. In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology. 2013;7(4):402–416. DOI: 10.3109/17435390.2012.666575.
  68. Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicology Letters. 2009;185(3):211–218. DOI: 10.1016/j.toxlet.2009.01.008.
  69. Kermanizadeh A, Vranic S, Boland S, Moreau K, Baeza-Squiban A, Gaiser BK, et al. An in vitro assessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity. BMC Nephrology. 2013;14:96. DOI: 10.1186/1471-2369-14-96.
  70. Hackenberg S, Scherzed A, Kessler M, Froelich K, Ginzkey C, Koehler C, et al. Zinc oxide nanoparticles induce photocatalytic cell death in human head and neck squamous cell carcinoma cell lines in vitro. International Journal of Oncology. 2010;37(6):1583–1590. DOI: 10.3892/ijo_00000812.
  71. Moratin H, Scherzad A, Gehrke T, Ickrath P, Radeloff K, Kleinsasser N, et al. Toxicological characterization of ZnO nanoparticles in malignant and non-malignant cells. Environmental and Molecular Mutagenesis. 2018;59(3):247–259. DOI: 10.1002/em.22156.
  72. Demir E, Akça H, Kaya B, Burgucu D, Tokgün O, Turna F, et al. Zinc oxide nanoparticles: genotoxicity, interactions with UV-light and cell-transforming potential. Journal of Hazardous Materials. 2014;264:420–429. DOI: 10.1016/j.jhazmat.2013.11.043.
  73. Shen C, Turney TW, Piva TJ, Feltis BN, Wright PFA. Comparison of UVA-induced ROS and sunscreen nanoparticle-generated ROS in human immune cells. Photochemical and Photobiological Sciences. 2014;13(5):781–788. DOI: 10.1039/c3pp50428j.
Опубликован
2024-07-08
Ключевые слова: наноструктурированный оксид цинка, физико-химические свойства, биораспределение наночастиц, биологическая активность наноматериалов, цитотоксичность, активные формы кислорода, апоптоз
Поддерживающие организации Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (грант № Б17-128, 2017–2019 гг.) и рамочной программы Европейского союза по науке и инновациям «Горизонт-2020» (подпрограмма Марии Склодовской-Кюри, грант № 778157 (CanBioSe), 2018–2023 гг.).
Как цитировать
Гармаза, Ю. М., Тамашевский, А. В., & Слобожанина, Е. И. (2024). Наноструктурированный оксид цинка: роль физико-химических свойств в биологической активности и потенциальной цитотоксичности материала. Экспериментальная биология и биотехнология, 2, 24-35. Доступно по https://journals.bsu.by/index.php/biology/article/view/6348