High-temperature oxygen nonstoichiometry and electrical conductivity of layered Ln2–xSrxNiO4–δ (Ln – La, Pr, Nd; х = 1.0 –1.6) nickelates
Abstract
High-temperature oxygen nonstoichiometry and electrical conductivity of Ln2 – xSrxNiO4 – δ (Ln – La, Pr, Nd; х = 1.0–1.6) nickelates were evaluated for potential application as oxygen electrodes of solid oxide fuel cells. In air, all studied nickelates were found to maintain tetragonal K2NiF4-type structure up to 1000 °С and to demonstrate oxygen deficiency above 500 °С. Oxygen nonstoichiometry increases with temperature and with strontium content in A sublattice. Ln2 – xSrxNiO4 – δ nickelates possess p-type metallic-like electrical conductivity under oxidizing atmosphere at 500 –1000 °С. In each series, the highest conductivity (260–400 S ⋅ cm–1, depending on rare-earth element) was observed for the composition with x = 1.2. Neodymium-containing nickelates demonstrate highest concentration of oxygen vacancies in the studied composition range.
References
- Müller K. A., Bednorz J. G. The discovery of a class of high-temperature superconductors. Science. 1987. Vol. 237, No. 4819. Р. 1133–1139. DOI: 10.1126/science.237.4819.1133.
- Bourges P., Sidis Y., Braden M., et al. High-Energy Spin Dynamics in La1.69 Sr0.31 NiO4. Phys. Rev. Lett. 2003. Vol. 90, No. 14. Article ID 147202. DOI: 10.1103/PhysRevLett.90.147202.
- Freeman P. G., Boothroyd A. T., Prabhakaran D., et al. Stripe order and magnetic transitions in La 2 − x Srx NiO4. Phys. Rev. B. 2004. Vol. 70, No. 2. Article ID 024413.
- Kakol Z., Spałek J., Honig J. M. Superconductivity and antiferromagnetism in La 2 − x Srx NiO4. J. Solid State Chem. 1989. Vol. 79, No. 2. Р. 288–292. DOI: 10.1016/0022-4596(89)90277-6.
- Sreedhar K., Honig J. M. Low-Temperature Electron Transport Properties of La 2 – x Srx NiO4 with 0.5 ≤ x ≤ 1.3. J. Solid State Chem. 1994. Vol. 111, No. 1. Р. 147–150. DOI: 10.1006/jssc.1994.1210.
- Al Daroukh M., Vashook V. V., Ullmann H., et al. Oxides of the AMO3 and A2 MO4-type: structural stability, electrical conductivity and thermal expansion. Solid State Ion. 2003. Vol. 158, No. 1/2. Р. 141–150. DOI: 10.1016/S0167-2738(02)00773-7.
- Kharton V. V., Viskup A. P., Kovalevsky A. V., et al. Ionic transport in oxygen-hyperstoichiometric phases with K2 NiF4-type structure. Solid State Ion. 2001. Vol. 143, No. 3/4. Р. 337–353. DOI: 10.1016/S0167-2738(01)00876-1.
- Vashook V. V., Trofimenko N. E., Ullmann H., et al. Oxygen nonstoichiometry and some transport properties of La Sr NiO4 − δ nickelate. Solid State Ion. 2000. Vol. 131, No. 3. Р. 329–336. DOI: 10.1016/S0167-2738(00)00571-3.
- Kharton V., Viskup A., Naumovich E., et al. Oxygen ion transport in La 2 NiO4-based ceramics. J. Mat. Chem. 1999. Vol. 9, No. 10. P. 2623–2629. DOI: 10.1039/A903276B.
- Vashook V. V., Yushkevich I. I., Kokhanovsky L. V., et al. Composition and conductivity of some nickelates. Solid State Ion. 1999. Vol. 119, No. 1/4. Р. 23–30. DOI: 10.1016/S0167-2738(98)00478-0.
- Kravchenko E., Khalyavin D., Zakharchuk K., et al. High-temperature characterization of oxygen-deficient K 2 NiF4-type Nd 2 − x Srx NiO4 − δ (x = 1.0 –1.6) for potential SOFC/SOEC applications. J. Mat. Chem. A. 2015. Vol. 3, No. 47. Р. 23852–23863. DOI: 10.1039/C5TA06779K.
- Aguadero A., Escudero M. J., Perez M., et al. Effect of Sr content on the crystal structure and electrical properties of the system La 2 − x Srx NiO4 + δ (0 ≤ x ≤ 1). Dalton Trans. 2006. Vol. 36. P. 4377– 4383. DOI: 10.1039/B606316K.
- Flura A., Dru S., Nicollet C., et al. Chemical and structural changes in Ln 2 NiO4 + δ (Ln = La, Pr or Nd) lanthanide nickelates as a function of oxygen partial pressure at high temperature. J. Solid State Chem. 2015. Vol. 228. P. 189 –198. DOI: 10.1016/j.jssc.2015.04.029.
- Kravchenko E., Zakharchuk K., Viskup A., et al. Impact of oxygen deficiency on electrochemical performance of K 2 NiF4-type (La1 – x Srx )2 NiO4 – δ oxygen electrodes. ChemSusChem. 2017. Vol. 10. P. 600 –611. DOI: 10.1002/cssc.201601340.
- Atkinson A., Barnett S., Gorte R. J., et al. Advanced anodes for high-temperature fuel cells. Nat. Mater. 2004. Vol. 3, No. 1. P. 17–27. DOI: 10.1038/nmat1040.
The authors who are published in this journal agree to the following:
- The authors retain copyright on the work and provide the journal with the right of first publication of the work on condition of license Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- The authors retain the right to enter into certain contractual agreements relating to the non-exclusive distribution of the published version of the work (e.g. post it on the institutional repository, publication in the book), with the reference to its original publication in this journal.
- The authors have the right to post their work on the Internet (e.g. on the institutional store or personal website) prior to and during the review process, conducted by the journal, as this may lead to a productive discussion and a large number of references to this work. (See The Effect of Open Access.)