High-temperature oxygen nonstoichiometry and electrical conductivity of layered Ln2–xSrxNiO4–δ (Ln – La, Pr, Nd; х = 1.0 –1.6) nickelates

  • Ekaterina S. Kravchenko Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk
  • Kiryl V. Zakharchuk CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro
  • Vladimir V. Pankov Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk
  • Aleksey A. Yaremchenko CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro

Abstract

High-temperature oxygen nonstoichiometry and electrical conductivity of Ln2 – xSrxNiO4 – δ (Ln – La, Pr, Nd; х = 1.0–1.6) nickelates were evaluated for potential application as oxygen electrodes of solid oxide fuel cells. In air, all studied nickelates were found to maintain tetragonal K2NiF4-type structure up to 1000 °С and to demonstrate oxygen deficiency above 500 °С. Oxygen nonstoichiometry increases with temperature and with strontium content in A sublattice. Ln2 – xSrxNiO4 – δ nickelates possess p-type metallic-like electrical conductivity under oxidizing atmosphere at 500 –1000 °С. In each series, the highest conductivity (260–400 S ⋅ cm–1, depending on rare-earth element) was observed for the composition with x = 1.2. Neodymium-containing nickelates demonstrate highest concentration of oxygen vacancies in the studied composition range.

Author Biographies

Ekaterina S. Kravchenko, Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk

postgraduate student at the department of physical chemistry, faculty of chemistry

Kiryl V. Zakharchuk, CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro

researcher at the department of materials and ceramic engineering

Vladimir V. Pankov, Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk

doctor of science (chemistry), full professor; head of the department of physical chemistry, faculty of chemistry

Aleksey A. Yaremchenko, CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro

PhD (chemistry); principal researcher at the department of materials and ceramic engineering

References

  1. Müller K. A., Bednorz J. G. The discovery of a class of high-temperature superconductors. Science. 1987. Vol. 237, No. 4819. Р. 1133–1139. DOI: 10.1126/science.237.4819.1133.
  2. Bourges P., Sidis Y., Braden M., et al. High-Energy Spin Dynamics in La1.69 Sr0.31 NiO4. Phys. Rev. Lett. 2003. Vol. 90, No. 14. Article ID 147202. DOI: 10.1103/PhysRevLett.90.147202.
  3. Freeman P. G., Boothroyd A. T., Prabhakaran D., et al. Stripe order and magnetic transitions in La 2 − x Srx NiO4. Phys. Rev. B. 2004. Vol. 70, No. 2. Article ID 024413.
  4. Kakol Z., Spałek J., Honig J. M. Superconductivity and antiferromagnetism in La 2 − x Srx NiO4. J. Solid State Chem. 1989. Vol. 79, No. 2. Р. 288–292. DOI: 10.1016/0022-4596(89)90277-6.
  5. Sreedhar K., Honig J. M. Low-Temperature Electron Transport Properties of La 2 – x Srx NiO4 with 0.5 ≤ x ≤ 1.3. J. Solid State Chem. 1994. Vol. 111, No. 1. Р. 147–150. DOI: 10.1006/jssc.1994.1210.
  6. Al Daroukh M., Vashook V. V., Ullmann H., et al. Oxides of the AMO3 and A2 MO4-type: structural stability, electrical conductivity and thermal expansion. Solid State Ion. 2003. Vol. 158, No. 1/2. Р. 141–150. DOI: 10.1016/S0167-2738(02)00773-7.
  7. Kharton V. V., Viskup A. P., Kovalevsky A. V., et al. Ionic transport in oxygen-hyperstoichiometric phases with K2 NiF4-type structure. Solid State Ion. 2001. Vol. 143, No. 3/4. Р. 337–353. DOI: 10.1016/S0167-2738(01)00876-1.
  8. Vashook V. V., Trofimenko N. E., Ullmann H., et al. Oxygen nonstoichiometry and some transport properties of La Sr NiO4 − δ nickelate. Solid State Ion. 2000. Vol. 131, No. 3. Р. 329–336. DOI: 10.1016/S0167-2738(00)00571-3.
  9. Kharton V., Viskup A., Naumovich E., et al. Oxygen ion transport in La 2 NiO4-based ceramics. J. Mat. Chem. 1999. Vol. 9, No. 10. P. 2623–2629. DOI: 10.1039/A903276B.
  10. Vashook V. V., Yushkevich I. I., Kokhanovsky L. V., et al. Composition and conductivity of some nickelates. Solid State Ion. 1999. Vol. 119, No. 1/4. Р. 23–30. DOI: 10.1016/S0167-2738(98)00478-0.
  11. Kravchenko E., Khalyavin D., Zakharchuk K., et al. High-temperature characterization of oxygen-deficient K 2 NiF4-type Nd 2 − x Srx NiO4 − δ (x = 1.0 –1.6) for potential SOFC/SOEC applications. J. Mat. Chem. A. 2015. Vol. 3, No. 47. Р. 23852–23863. DOI: 10.1039/C5TA06779K.
  12. Aguadero A., Escudero M. J., Perez M., et al. Effect of Sr content on the crystal structure and electrical properties of the system La 2 − x Srx NiO4 + δ (0 ≤ x ≤ 1). Dalton Trans. 2006. Vol. 36. P. 4377– 4383. DOI: 10.1039/B606316K.
  13. Flura A., Dru S., Nicollet C., et al. Chemical and structural changes in Ln 2 NiO4 + δ (Ln = La, Pr or Nd) lanthanide nickelates as a function of oxygen partial pressure at high temperature. J. Solid State Chem. 2015. Vol. 228. P. 189 –198. DOI: 10.1016/j.jssc.2015.04.029.
  14. Kravchenko E., Zakharchuk K., Viskup A., et al. Impact of oxygen deficiency on electrochemical performance of K 2 NiF4-type (La1 – x Srx )2 NiO4 – δ oxygen electrodes. ChemSusChem. 2017. Vol. 10. P. 600 –611. DOI: 10.1002/cssc.201601340.
  15. Atkinson A., Barnett S., Gorte R. J., et al. Advanced anodes for high-temperature fuel cells. Nat. Mater. 2004. Vol. 3, No. 1. P. 17–27. DOI: 10.1038/nmat1040.
Published
2017-11-29
Keywords: nickelate, solid oxide fuel cells, oxygen electrode, oxygen nonstoichiometry, electrical conductivity
How to Cite
Kravchenko, E. S., Zakharchuk, K. V., Pankov, V. V., & Yaremchenko, A. A. (2017). High-temperature oxygen nonstoichiometry and electrical conductivity of layered Ln2–xSrxNiO4–δ (Ln – La, Pr, Nd; х = 1.0 –1.6) nickelates. Journal of the Belarusian State University. Chemistry, 1, 43-49. Retrieved from https://journals.bsu.by/index.php/chemistry/article/view/1156