Bismuth and lead underpotential deposition on bismuth telluride: new insights into the electrochemical synthesis of bismuth telluride and evaluation of real surface area

  • Aliaksei S. Bakavets Belarusian State University, Niezaliežnasci avenue, 4, 220030, Minsk
  • Yauhen N. Aniskevich Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk
  • Genady A. Ragoisha Research Institute for Physical Chemical problems of the Belarusian State University, Leningradskaya street, 14, 220006, Minsk
  • Eugene A. Streltsov Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk

Abstract

The underpotential deposition (UPD) processes of lead and bismuth on bismuth telluride (Bi2Te3) have been discovered with the underpotential shifts 0.3 V for Pb UPD and 0.1 V for Bi UPD. The Pb UPD was shown to be helpful for bismuth telluride real surface area evaluation. Potentiodynamic profiles of Pb UPD differ significantly on bismuth telluride and tellurium substrates, which helps to control purity of bismuth telluride electrodeposit. Bismuth telluride films were deposited from acidic solution of TeO2 and bismuth salt on steel substrates using potential pulse electrodeposition and cyclic voltammetry (CV). The CV has proved that the stoichiometric bismuth telluride deposition proceeds in the potential range of metallic bismuth anodic oxidation, which excludes metallic Bi as a required intermediate in the sustained electrodeposition of Bi2Te3. Bismuth adatoms are much more stable than metallic (bulk) Bi0 on Bi2Te3 and they are very likely to be involved in the electrodeposition mechanism. The potentials of pulsed electrodeposition were optimized taking into account the UPD of Bi. The absence of Te and Bi phases in electrodeposited Bi2Te3 was proved by XRD and CV. The third form of Bi0 with oxidation potential intermediate between those of bulk Bi0 (first form) and Bi adlayer (second form) has been discovered in the electrodeposition with the excess of Bi3+ in electrolyte and attributed to Bi atoms intercalated in Van der Waals planes of bismuth telluride. The effect of Bi intercalation is of interest as a means of loosening the interlayer interactions in the layered structure of bismuth telluride for its further application in exfoliation procedures.

Author Biographies

Aliaksei S. Bakavets, Belarusian State University, Niezaliežnasci avenue, 4, 220030, Minsk

student at the faculty of chemistry

Yauhen N. Aniskevich, Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk

student at the faculty of chemistry

Genady A. Ragoisha, Research Institute for Physical Chemical problems of the Belarusian State University, Leningradskaya street, 14, 220006, Minsk

PhD (chemistry), docent; leading researcher

Eugene A. Streltsov, Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk

doctor of science (chemistry), full professor; head of the department of electrochemistry, faculty of chemistry

References

  1. Eibl O., Nielsch K., Peranio N., et al. (eds). Thermoelectric Bi2Te3 Nanomaterials. Weinheim, 2015. DOI: 10.1002/9783527672608.
  2. Biswas K., He J., Blum I. D., et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature. 2012. Vol. 489, issue 7416. P. 414–418. DOI: 10.1038/nature11439.
  3. Richoux V., Diliberto S., Boulanger C., et al. Pulsed electrodeposition of bismuth telluride films: influence of pulse parameters over nucleation and morphology. Electrochimica Acta. 2007. Vol. 52, issue 9. P. 3053–3060. DOI: 10.10.16/j.electacta.2006.09.042.
  4. Lei C., Ryder K. S., Koukharenko E., et al. Electrochemical deposition of bismuth telluride thick layers onto nickel. Electrochem. Commun. 2016. Vol. 66. P. 1–4. DOI: 10.1016/j.elecom.2016.02.005.
  5. Gregory B. W., Stickney J. L. Electrochemical atomic layer epitaxy (ECALE). J. Electroanal. Chem. Interfacial Electrochem. 1991. Vol. 300, issue 1–2. P. 543–561. DOI: 10.1016/0022-0728(91)85415-L.
  6. Bondarenko A. S., Ragoisha G. A., Osipovich N. P., et al. Potentiodynamic electrochemical impedance spectroscopy of lead UPD on polycrystalline gold and on selenium atomic underlayer. Electrochem. Commun. 2005. Vol. 7, No. 6. P. 631– 636. DOI: 10.1016/j.elecom.2005.04.001.
  7. Bondarenko A. S., Ragoisha G. A., Osipovich N. P., et al. Multiparametric electrochemical characterisation of Te – Cu – Pb atomic three-layer structure deposition on polycrystalline gold. Electrochem. Commun. 2006. Vol. 8, No. 6. P. 921– 926. DOI: 10.1016/j.elecom.2006.03.033.
  8. Chulkin P. V., Aniskevich Y. M., Streltsov E. A., et al. Underpotential shift in electrodeposition of metal adlayer on tellurium and the free energy of metal telluride formation. J. Solid State Electrochem. 2015. Vol. 19, No. 9. P. 2511–2516. DOI: 10.1007/s10008-015-2831-x.
  9. Ivanou D. K., Ivanova Y. A., Ragoisha G. A., et al. Electrodeposition of tellurium and on tellurium. In: Grey D. (ed.). Tellurium: Properties, Uses Research. New York, 2017.
  10. Hicks L. D., Dresselhaus M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B. 1993. Vol. 47, No. 19. P. 12727–12731. DOI: 10.1103/PhysRevB.47.12727.
  11. Wang G., Zhu X. G., Sun Y. Y., et al. Topological insulator thin films of Bi2Te3 with controlled electronic structure. Adv. Mater. 2011. Vol. 23, No. 26. P. 2929 –2932. DOI: 10.1002/adma.201100678.
  12. Fornari C. I., Rappl P. H., Morelhão S. L., et al. Structural properties of Bi2Te3 Topological insulator thin films grown by molecular beam epitaxy on (111) BaF2 substrates. J. Appl. Phys. 2016. Vol. 119, No. 16. P. 165303. DOI: 10.1063/1.4947266.
  13. Clavilier J., Feliu J. M., Aldaz A. An irreversible structure sensitive adsorption step in bismuth underpotential deposition at platinum electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1988. Vol. 243, No. 2. P. 419–433. DOI: 10.1016/0022-0728(88)80045-7.
  14. Sayed S. M., Jüttner K. Electrocatalysis of oxygen and hydrogen peroxide reduction by UPD of bismuth on poly- and mono-crystalline gold electrodes in acid solutions. Electrochimica Acta. 1983. Vol. 28, No. 11. P. 1635–1641. DOI: 10.1016/0013-4686(83)85228-1.
  15. Ragoisha G. A., Bondarenko A. S. Potentiodynamic electrochemical impedance spectroscopy. Electrochimica Acta. 2005. Vol. 50, No. 7. P. 1553–1563. DOI: 10.1016/j.electacta.2004.10.055.
  16. Zhu W., Yang J. Y., Gao X. H., et al. The underpotential deposition of bismuth and tellurium on cold rolled silver substrate by ECALE. Electrochimica Acta. 2005. Vol. 50, No. 27. P. 5465–5472. DOI: 10.1016/j.electacta.2005.03.028.
  17. Gregory B. W., Norton M. L., Stickney J. L. Thin-layer electrochemical studies of the underpotential deposition of cadmium and tellurium on polycrystalline Au, Pt and Cu electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1990. Vol. 293, No. 1. P. 85–101. DOI: 10.1016/0022-0728(90)80054-A.
  18. Ragoisha G. A., Bondarenko A. S., Osipovich N. P., et al. Multiparametric characterisation of metal-chalcogen atomic multilayer assembly by potentiodynamic electrochemical impedance spectroscopy. Electrochimica Acta. 2008. Vol. 53, No. 11. P. 3879–3888. DOI: 10.1016/j.electacta.2007.09.017.
  19. Osipovich N. P., Streltsov E. A., Susha A. S. Bismuth underpotential deposition on tellurium. Electrochem. Commun. 2000. Vol. 2, No. 12. P. 822–826. DOI: 10.1016/s1388-2481(00)00130-2.
  20. Ragoisha G. A., Bondarenko A. S., Osipovich N. P., et al. Potentiodynamic electrochemical impedance spectroscopy: lead underpotential deposition on tellurium. J. Electroanal. Chem. 2004. Vol. 565, No. 2. P. 227–234. DOI: 10.1016/j.jelechem.2003.10.014.
  21. Harman T. C., Walsh M. P., Laforge B. E., et al. Nanostructured thermoelectric materials. J. Electron. Mater. 2005. Vol. 34, No. 5. P. 19 –22. DOI: 10.1007/s11664-005-0083-8.
  22. Trasatti S., Petrii O. A. Real surface area measurements in electrochemistry. J. Electroanal. Chem. 1992. Vol. 327, issue 1–2. P. 353–376. DOI: 10.1016/0022-0728(92)80162-w.
  23. Malashchonak M. V., Streltsov E. A., Ragoisha G. A., et al. Evaluation of electroactive surface area of CdSe nanoparticles on wide bandgap oxides (TiO2, ZnO) by cadmium underpotential deposition. Electrochem. Commun. 2016. Vol. 72. P. 176–180. DOI: 10.1016/j.elecom.2016.10.004.
  24. Zheng J., Zhang H., Dong S., et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nature Commun. 2014. Vol. 5, Article number 2995. DOI: 10.1038/ncomms3995.
  25. Soriaga M. P., Stickney J., Bottomley L. A., et al. Thin Films: Preparation, Characterization, Applications. New York, 2012. DOI: 10.1007/978-1-4615-0775-8.
  26. Nicolosi V., Chhowalla M., Kanatzidis M. G., et al. Liquid exfoliation of layered materials. Science. 2013. Vol. 340, No. 6139, Article number 1226419. DOI: 10.1126/science.1226419.
  27. Ma Y., Johansson A., Ahlberg E., et al. A mechanistic study of electrodeposition of bismuth telluride on stainless steel substrates. Electrochimica Acta. 2010. Vol. 55, No. 15. P. 4610–4617. DOI: 10.1016/j.electacta.2010.03.018.
  28. Ragoisha G. A., Bondarenko A. S. Potentiodynamic electrochemical impedance spectroscopy for solid state chemistry. Solid State Phenomena. 2003. Vol. 90–91. P. 103–108. DOI: 10.4028/www.scientific.net/SSP.90-91.103.
  29. Bondarenko A. S., Ragoisha G. A. Progress in Chemometrics Research. New York, 2005. P. 89–102.
  30. Ragoisha G. A. Potentiodynamic electrochemical impedance spectroscopy for underpotential deposition processes. Electroanalysis. 2015. Vol. 27, No. 4. P. 855–863. DOI: 10.1002/elan.201400648.
  31. Chichagov A. V., Belonozhko A. B., Lopatin A. L., et al. The information processing system on crystal structures of minerals (Mincryst). Kristallografiya. 1990. Vol. 35, No. 3. P. 610–616.
Published
2017-12-01
Keywords: bismuth telluride, electrodeposition, underpotential deposition, UPD
How to Cite
Bakavets, A. S., Aniskevich, Y. N., Ragoisha, G. A., & Streltsov, E. A. (2017). Bismuth and lead underpotential deposition on bismuth telluride: new insights into the electrochemical synthesis of bismuth telluride and evaluation of real surface area. Journal of the Belarusian State University. Chemistry, 2, 3-13. Retrieved from https://journals.bsu.by/index.php/chemistry/article/view/1161