Structural and luminescence properties BaI2 : Eu2+, Eu3+ powders and BaO – B2O3/BaI2 : Eu2+, Eu3+ glass-ceramics

  • Tatsiana A. Salamakha Research Institute for Physical Chemical problems of the Belarusian State University, Leningradskaya street, 14, 220006, Minsk
  • Yauhen V. Tratsiak Research Institute for Physical Chemical problems of the Belarusian State University, Leningradskaya street, 14, 220006, Minsk
  • Ekaterina E. Trusova Belarusian State Technological University, Sviardlova street, 13A, 220006, Minsk

Abstract

An original method of BaI2 : Eu2+, Eu3+ powders synthesis has been developed in this work. The structural, morphological and spectral-luminescence properties of these powders has been researched. Low-melted glasses BaO – B2O3 and method of BaO – B2O3 / BaI2 : Eu2+, Eu3+ glass-ceramics formation based on this glasses have been proposed. This glass-ceramics may be promising for use as a transformer of the solar spectrum UV component in the blue and red region of the spectrum in passive supplementary plants lighting.

Author Biographies

Tatsiana A. Salamakha, Research Institute for Physical Chemical problems of the Belarusian State University, Leningradskaya street, 14, 220006, Minsk

junior researcher at the laboratory of nanochemistry

Yauhen V. Tratsiak, Research Institute for Physical Chemical problems of the Belarusian State University, Leningradskaya street, 14, 220006, Minsk

PhD (chemistry); senior researcher at the laboratory of nanochemistry

Ekaterina E. Trusova, Belarusian State Technological University, Sviardlova street, 13A, 220006, Minsk

PhD (engineering); associate professor at the department of glass and ceramics technology, faculty of chemical technology and technique

References

  1. Faoite D., Hanlon L., Roberts O., et al. Development of glass-ceramic scintillators for gamma-ray astronomy. J. Phys.: Conf. Ser. 2015. Vol. 620, No. 1. P. 012002.
  2. Nikl M., Yoshikawa A. Recent R & D Trends in inorganic single-crystal scintillator materials for radiation detection. Adv. Opt. Mater. 2015. Vol. 3, issue 4. P. 463–481. DOI: 10.1002/adom.201400571.
  3. Moses W. W. Current trends in scintillator detectors and materials. Nucl. Instrum. Methods Phys. Res. Section A: Accelerators, Spectrom., Detect. Associated Equip. 2002. Vol. 487, issues 1–2. P. 123–128. DOI: 10.1016/S0168-9002(02)00955-5.
  4. Protasova N. N. [Light culture as a way to identify the potential productivity of plants]. Fiziol. rast. 1987. Vol. 34, No. 4. P. 812–822 (in Russ.).
  5. Apparatus for pronoting plant growth with artificial light : pat. 4078169 U. S., US 05/716,763. J. D. Armstrong ; declarer J. D. Armstrong ; decl. 23.08.1976 ; publ. 07.03.1978. U. S. Patent and Trademark Office. 1978.
  6. Bakharev I., Prokof ’ev A., Tyrkin А., et al. [Application of LED lighting for greenhouse lighting: reality and prospects]. Sovrem. tekhnol. avtom. 2010. No. 2. P. 76–82 (in Russ.).
  7. Korepanov I. V., Omirova N. I., Omarkhan А. Sh. [LED irradiator for greenhouses]. Materialy i tekhnologii novykh pokolenii v sovremennom materialovedenii : sb. tr. mezhdunar. konf. (Tomsk, 9 –11 June, 2016). Tomsk, 2016. P. 372–377 (in Russ.).
  8. Naichia Y., Chung J.-P. High-brightness LEDs – Energy efficient lighting sources and their potential in indoor plant cultivation. Renew. Sustainable Energy Rev. 2009. Vol. 13, issue 8. P. 2175–2180.
  9. Tret’yak Е. V., Shevchenko G. P., Solomakha Т. А., et al. [Effect of precursor morphology on the structural properties, optical absorption and luminescence of BaI2 : Eu2+, Eu3+ ]. Neorg. Materialy [Inorg. Mater.]. 2017. Vol. 53, No. 3. P. 296–301 (in Russ.).
  10. Antipov A. A., Shchukin D. G., Fedutik Y., et al. Carbonate microparticles for hollow polyelectrolyte capsules fabrication. Colloids Surf. A: Physicochem. Eng. Aspects. 2003. Vol. 224, issues 1–3. P. 175–183. DOI: 10.1016/S0927-7757(03)00195-X.
  11. Geng X., Liu L., Jiang J., et al. Crystallization of CaCO3 Mesocrystals and complex aggregates in a mixed solvent media using polystyrene sulfonate as a crystal growth modifier. Cryst. Growth & Des. 2010. Vol. 10, issue 8. P. 3448–3453. DOI: 10.1021/cg100206y.
  12. Yu S.-H., Colfen H., Hu A.-W., et al. Complex spherical BaCO3 superstructures self-assembled by a facile mineralization process under control of simple polyelectrolytes. Cryst. Growth & Des. 2004. Vol. 4, issue 1. P. 33–37. DOI: 10.1021/cg0340906.
  13. Luo Q., Qiao X., Fan X., et al. Reduction and luminescence of europium ions in glass ceramics containing SrF2 nanocrystals. J. Non-Crystalline Solids. 2008. Vol. 354, issues 40–41. P. 4691– 4694. DOI: 10.1016/j.jnoncrysol.2008.07.019.
  14. Lian Z., Wang J., Lv Y., et al. The reduction of Eu3+ to Eu2+ in air and luminescence properties of Eu2+ activated ZnO – B2O3 – P2O5 glasses. J. A lloys and Compounds. 2007. Vol. 430, issues 1–2. P. 257–261. DOI: 10.1016/j.jallcom.2006.05.002.
Published
2017-12-01
Keywords: europium luminescence, barium iodide, glass-ceramics
How to Cite
Salamakha, T. A., Tratsiak, Y. V., & Trusova, E. E. (2017). Structural and luminescence properties BaI2 : Eu2+, Eu3+ powders and BaO – B2O3/BaI2 : Eu2+, Eu3+ glass-ceramics. Journal of the Belarusian State University. Chemistry, 2, 43-49. Retrieved from https://journals.bsu.by/index.php/chemistry/article/view/1166