Qualitative composition determination of macromolecular complexes of Cu(II), Zn(II), Co(II), Mn(II) ions with copolymer of acrylamide and sodium acrylate

  • Elena K. Fomina Research Institute for Physical Chemical problems of the Belarusian State University, Leningradskaya street, 14, 220006, Minsk
  • Galina V. Butovskaya Research Institute for Physical Chemical problems of the Belarusian State University, Leningradskaya street, 14, 220006, Minsk
  • Leonid P. Krul Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk
  • Evgeny V. Grinyuk Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk
  • Oleg V. Yakimenko Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk

Abstract

The composition of macromolecular complexes formed at a room temperature by mixing aqueous solutions of acrylamide and sodium acrylate copolymer, which was obtained by alkaline hydrolysis of polyacrylonitrile fiber, with Cu(II), Zn(II), Co(II), and Mn(II) sulfates have been shown to depend upon the molar ratio of the copolymer carboxylate group and the metal ion in the solution. The type of the complexes formed between the metal ions studied with the copolymer carboxylate group has been identified by the Fourier-IR spectroscopy. Сonditions have been found of preferable formation of bidentate and/or monodentate complexes as well as bridging (or pseudo-bridging) bonds. The possibility of nitrogen atoms of the amide group participation in the formation of a coordination bond with Cu(II) ions has been shown. Changing hydration degree of the amide group of the copolymer has been suggested to take place during the formation of bidentate insoluble hydrophobic complexes between metal ion and the copolymer carboxylate  group (at molar ratios of COO – Me(II) of 1 : 1 and 2 : 1).

Author Biographies

Elena K. Fomina, Research Institute for Physical Chemical problems of the Belarusian State University, Leningradskaya street, 14, 220006, Minsk

senior researcher at the laboratory of structural and chemical modification of polymers

Galina V. Butovskaya, Research Institute for Physical Chemical problems of the Belarusian State University, Leningradskaya street, 14, 220006, Minsk

PhD (chemistry), docent; leading researcher at the laboratory of structural and chemical modification of polymers

Leonid P. Krul, Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk

doctor of science (chemistry), full professor; head of the department of macromolecular chemistry, faculty of chemistry

Evgeny V. Grinyuk, Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk

PhD (chemistry), docent; associate professor at the department of radiation chemistry and chemical-pharmaceutical technologies, faculty of chemistry

Oleg V. Yakimenko, Belarusian State University, Nezavisimosti avenue, 4, 220030, Minsk

junior researcher at the laboratory of chemical-analytical systems at the department of analytical chemistry, faculty of chemistry

References

  1. Abzaeva K. A., Voronkov M. G., Lopyrev V. A. [Biologically active derivatives of polyacrylic acid]. Vysokomolek. Soed. Ser. B. 1997. Vol. 39, No. 11. P. 1883–1904 (in Russ.).
  2. Аbzаеvа К. А., Voronkov M. G., Zhilitskaya L. V., et al. [Antitumor effect of polymetalloacrylates – hemostatics of new generation]. Khim.-fаrmаtsеvt. zh. 2012. Vol. 46, No. 4. P. 11–13 (in Russ.).
  3. Li W., Zhao H., Teasdale P. R., et al. Synthesis and characterisation of a polyacrylamide-polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd. React. Funct. Polym. 2002. Vol. 52. P. 31–41.
  4. Cavus S., Gurdag G., Sozgen K., et al. The preparation and characterization of poly(acrylic acid-co-methacrylamide) gel and its use in the non-competitive heavy metal removal. Polym. Advan. Technol. 2009. Vol. 20, No. 3. P. 165–172.
  5. Xie J., Liu X., Liang J. Absorbency and adsorption of poly(acrylic acid-co-acrylamide) hydrogel. J. A ppl. Polym. Sci. 2007. Vol. 106. P. 1606–1613.
  6. Han M., Chi L., Ye M., et al. Crosslinking reaction of polyacrylamide with chromium (III). Polym. Bull. 1995. Vol. 35, No. 1–2. P. 109–113.
  7. Pomogailo A. D., Dzhardimalieva G. I., Kestelman V. N. Macromolecular metal carboxylates and their nanocomposites. Springer ser. in mater. sci. Dordrecht ; London ; New York, 2010.
  8. Zezin A. B., Pogacheva V. B., Feldman V. I., et al. From triple interpolyelectrolyte-metal complexes to polymer-metal nanocomposites. Adv. Coll. Interf. Sci. 2010. Vol. 158. P. 84–93.
  9. Zaitsev A. S., Levchenko B. F., Buikliskii V. D., et al. [Cobalt(II) and nickel(II) complex compounds with the acrylic acid-acrylamide copolymer]. Zn. obshchei khim. [Russ. J. Gen. Chem]. 2011. Vol. 81, issue 5. P. 871 (in Russ.).
  10. Plant feed solutions comprising nutritive metals : pat. GB 2411896, C 05 D 9/02 / Y. Tsivion ; applicant Yoram Tsivion. No. 0405446.6 ; appl. 11.03.04 ; print. 14.09.05.
  11. Compositions supplying essential elements for preventing and correcting nutritional deficiencies in plants : pat. WO 2007/003388 A 2, C 05 D 9/02, C 05 D 9/00, C 05 F 11/00, C 05 G 3/02 / L. Filippini, M. Gusmeroli, S. Mormile, D. Portoso ; applicant IFAGRO S. P. A. No. PCT/EP2006/006425 ; appl. 30.06.06 ; print. 11.01.07.
  12. Morlay C., Cramer M., Mongenot Y., et al. Potentiometric study of Cu(II) and Ni(II) complexation with two high molecular weight poly(acrylic acids). Talanta. 1998. Vol. 45, No. 6. Р. 1177–1188.
  13. Iatridi Z., Bokias G., Kallitsis J. K. Physicochemical study of the complexation of poly(acrylic acid) with Cu2+ ions in water. J. A ppl. Polym. Sci. 2008. Vol. 108. P. 769–776.
  14. Rahbari R., Francois J. Interactions between aluminium ions and acrylic acid-acrylamide copolymers in aqueous solution. 2. Phase separation. Polymer. 1988. Vol. 29, May. Р. 851–859.
  15. Yokoi H., Kawata S., Iwaizumi M. Interaction modes between heavy metal ions and water-soluble polymers. 2. Spectroscopic and magnetic reexamination of the aqueous solutions of cupric ions and poly(acrylic acid). J. A mer. Chem. Soc. 1986. Vol. 108, No. 12. Р. 3361–3365.
  16. Francois J., Heitz C., Mestdagh M. Spectroscopic study (u. v.-visible and electron paramagnetic resonance) of the interactions between synthetic polycarboxylates and copper ions. Polymer. 1997. Vol. 38, No. 21. Р. 5321–5332.
  17. Ismi I., Rift E. H., Lebkiri A., et al. Spectral characterization of PA – Cu under two polymeric forms and their complex PA – Cu. J. Mater. Environ. Sci. 2015. Vol. 6, No. 2. P. 343–348.
  18. Hiraoki T., Kaneko M., Hikichi K. 13C and water proton-nuclear magnetic relaxation of Cu(II)-poly(D-glutamic acid) complex in aqueous solution. Polym. J. 1979. Vol. 11, No. 5. P. 397–403.
  19. Hiraoki T., Kaneko M., Hikichi K. 13C paramagnetic shift of Co(II) – poly(D-glutamic acid) complex. Polym. J. 1979. Vol. 11, No. 7. P. 591–593.
  20. Iwaki O., Hikichi K., Kaneko M. An NMR study of poly(glutamic acid) metal complex. Polym. J. 1973. Vol. 4, No. 6. P. 623–627.
  21. Fomina E. K., Krul’ L. P., Grinyuk E. V. [Phase state of aqueous solutions of acrylamide sodium acrylate copolymers in the presence of copper, zinc, and manganese ions]. Zn. prikl. khim. [Russ. J. Appl. Chem.]. 2015. Vol. 88, No. 9. P. 1500–1504 (in Russ.).
  22. Fomina E. K., Krul’ L. P., Grinyuk E. V., et al. [Effect of Сu2+, Zn2+, and Mn2+ ions on the water absorption of polyelectrolyte hydrogels based on polyacrylonitrile fiber hydrolyzate]. Zn. prikl. khim. [Russ. J. Appl. Chem.]. 2014. Vol. 87, No. 9. P. 1345–1350 (in Russ.).
  23. Krul’ L. P., Grinyuk E. V., Yakimtsova L. B., et al. [Gelation in aqueous solutions of a functionalized polyacrylamides]. Materialy. Tekhnol. Instrumenty. 2011. Vol. 16, No. 3. P. 85–89 (in Russ.).
  24. Fomina E. K., Krulʼ L. P., Butovskaya G. V., et al. [Structure determination of the macromolecular complexes of microelements with copolymers of acrylamide and sodium acrylate by 13C NMR spectroscopy]. Vestci NAN Belarusi. Ser. khim. navuk. 2016. No. 4. P. 80–90 (in Russ.).
  25. Rivas B. L., Pooley S. A., Soto M., et al. Synthesis, characterization, and polychelatogenic properties of poly(acrylic acid-co-acrylamide). J. Polym. Sci. Part A . Polym. Chem. 1997. Vol. 35. P. 2461–2467.
  26. Rivas B. L., Seguel G. V. Polychelates of poly(acrylic acid-co-acrylamide) with Cu(II), Co(II), and Ni(II). Polym. Bull. 1998. Vol. 40. Р. 431–437.
  27. Polimery sinteticheskie vodorastvorimye «VRP-3». URL: http://www.lesohimik.by/product/promyshlennie/ polimery-sinteticheskie-vodorastvorimye-vrp-3-detail (date of access: 26.06.2017) (in Russ.).
  28. Murugan R., Mohan S., Bigotto A. FTIR and polarized raman spectra of acrylamide and polyacrylamide. J. Kor. Phys. Soc. 1998. Vol. 32, No. 4. P. 505–512.
  29. Magalhaes A. S. G., Neto M. P., Bezerra M. N., et al. Application of FTIR in the determination of acrylate content in poly(sodium acrylate-co-acrylamide) superabsorbent hydrogels. Quim. Nova. 2012. Vol. 35, No. 7. P. 1464–1467.
  30. Krul L. P., Yakimtsova L. B., Nareiko E. I., et al. Influence of the sodium hydroxide concentration on chemical composition of nitron hydrolyzate D. Vestci NAN Belarusi. Ser. khim. navuk. 1999. No. 4. P. 95–97 (in Russ.).
  31. Vasiliu S., Racovita S., Neagu V., et al. Desbrieres. J. Polymer-metal complexes based on gellan. Polimery. 2010. Vol. 55, No. 11–12. P. 839–845.
  32. Kuptsov A. Kh., Zhizhin G. N. Furʼe-spektry kombinatsionnogo rasseyaniya i infrakrasnogo pogloshcheniya polimerov : spravochnik. Мoscow, 2001 (in Russ.).
  33. Nara M., Morii H., Tanokura M. Coordination to divalent cations by calcium-binding proteins studied by FTIR spectroscopy. Biochim. Biophys. Acta. 2013. Vol. 1828. P. 2319–2327.
  34. Dudev T., Lim C. Effect of carboxylate-binding mode on metal binding / selectivity and function in proteins. Acc. Chem. Res. 2007. Vol. 40, No. 1. P. 85–93.
  35. Wang B., Liu M., Chen Y., et al. Effect of metal ions and pH values on the conformational transition of the copolymer chain in aqueous solutions. J. A ppl. Polym. Sci. 2007. Vol. 104, No. 3. P. 1714 –1722.
  36. Kostromina N. A., Kumok V. N., Skoryk N. A. [Khimiya koordinatsionykh soedinenii]. Мoscow, 1990 (in Russ.).
  37. Tomida T. K., Hamaguchi K., Tunashima S., et al. Binding properties of a water-soluble chelating polymer with divalent metal ions measured by ultrafiltration. Poly(acrylic acid). Ind. Eng. Chem. Res. 2001. Vol. 40, No. 16. P. 3557–3562.
  38. Sabbagh I., Delsanti M. Solubility of highly charged anionic polyelectrolytes in presence of multivalent cations: Specific interaction effect. Eur. Phys. J. 1999. Vol. 1. Р. 75–86.
  39. Avadanei M., Avadanei O., Fundueanua G. Effect of comonomer ratio and ionic strength on the thermo-induced conformational changes in N-isopropylacrylamide based copolymers: An ATR-FTIR spectroscopic study. Vibr. Spectr. 2012. Vol. 61. P. 133–143.
  40. Soldatov V. S., Zelenkovskii V. S. Interionic interactions in carboxylic acid cation exchangers on the base of polyacrylic acid. Ab initio calculations. Solv. Extr. and Ion Exch. 2011. Vol. 29, No. 3. Р. 458–487.
  41. Irving H., Williams R. J. P. The stability of transition metal complexes. J. Chem. Soc. 1953. No. 10. P. 3192–3210.
  42. Leung W. M., Axelson D. E., Van Dyke J. D. Thermal degradation of polyacrylamide and poly(acrylamide-co-acrylate). J. Polym. Sci. Part A . Polym. Chem. 1987. Vol. 25. P. 1825–1846.
Published
2017-12-01
Keywords: macromolecular metal complexes, copolymer of acrylamide with sodium acrylate, Cu(II); Zn(II); Mn(II); Co(II) ions
How to Cite
Fomina, E. K., Butovskaya, G. V., Krul, L. P., Grinyuk, E. V., & Yakimenko, O. V. (2017). Qualitative composition determination of macromolecular complexes of Cu(II), Zn(II), Co(II), Mn(II) ions with copolymer of acrylamide and sodium acrylate. Journal of the Belarusian State University. Chemistry, 2, 94-109. Retrieved from https://journals.bsu.by/index.php/chemistry/article/view/1172