Synthesis of functionalized polyisobutylene and its block copolymers with D,L-lactide

  • Pavel A. Nikishau Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Evgenii A. Ksendzov Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Dmitriy I. Shiman Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Ludmila V. Gaponik Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Sergei V. Kostjuk Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus; Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus https://orcid.org/0000-0002-7466-3662

Abstract

Method of reactive polyisobutylene modification by various alkoxybenzenes (anisole and 4-phenoxybutanol) was proposed to form functionalized polyisobutylenes. Polymerization of D,L-lactide was explored on the 4-phenoxybutanol/1,5,7-triazabicyclo[4.4.0]dec-5-ene system. It led to determination of optimal conditions for gaining of poly(isobutylene-b-D,L-lactide). Such copolymers (Mn = 14 300 g/mol and Mn = 36 600 g/mol, Mw /  Mn ≤ 2.5) which were obtained by the polymerization of D,L-lactide on polyisobutylene macroinitiator shows microphase ordering. Formation of the block copolymers is confirmed by 1Н NMR spectroscopy, gel permeation chromatography, and scanning electron microscopy.

Author Biographies

Pavel A. Nikishau, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

researcher at the laboratory of catalysis of polymerization processes

Evgenii A. Ksendzov, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

technician at the laboratory of catalysis of polymerization processes

Dmitriy I. Shiman, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

PhD (chemistry); leading researcher at the laboratory of catalysis of polymerization processes

Ludmila V. Gaponik, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

PhD (chemistry); senior researcher at the laboratory of catalysis of polymerization processes

Sergei V. Kostjuk, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus; Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

doctor of science (chemistry), docent; leading researcher at the laboratory of catalysis of polymerization processes, Research Institute for Physical Chemical Problems, Belarusian State University, and head of the department of high molecular weight compounds, faculty of chemistry, Belarusian State University

References

  1. Chakraborty DD, Nath LK, Chakraborty P. Recent progress in smart polymers: behaviour, mechanistic understanding and application. Polymer Plastics Technology and Engineering. 2018;57(10):945–957. DOI: 10.1080/03602559.2017.1364383.
  2. Xu D, Guo J, Yan F. Porous ionic polymers: Design, synthesis, and applications. Progress Polymer Science. 2017;79:121–143. DOI: 10.1016/j.progpolymsci.2017.11.005.
  3. Licea-Claveríe A, Alvarez-Sánchez J, Picos-Corrales LA, Obeso-Vera C, Flores MC, Cornejo-Bravo JM. The use of the RAFT-technique for the preparation of temperature/pH sensitive polymers in different architectures. Macromolecular Symposia. 2009;283–284(1):56–66. DOI: 10.1002/masy.200950909.
  4. Sapozhnikov DA, Vygodskii YS. Achievements in polycondensation and condensation polymers. Polymer Science. Series B. 2015;57(4):231–248. Russian. DOI: 10.7868/S2308113915040117.
  5. Feng H, Lu X, Wang W, Kang N-G, Mays JW. Block Copolymers: Synthesis, Self-Assembly, and Applications. Polymers. 2017;9(10):494. DOI: 10.3390/polym9100494.
  6. Thurn-Albrecht T, Steiner R, DeRouchey J, Stafford CM, Huang E, Bal M. Nanoscopic Templates from Oriented Block Copolymer Films. Advanced Materials. 2000;12(11):787–791. DOI: 10.1002/(SICI)1521-4095(200006)12:11<787::AID-ADMA787>3.0.CO;2-1.
  7. Ulbricht M. Advanced functional polymer membranes. Polymer. 2006;47(7):2217–2262. DOI: 10.1016/j.polymer.2006.01.084.
  8. Grande D, Penelle J, Davidson P, Beurroies I, Denoyel R. Functionalized ordered nanoporous polymeric materials: from the synthesis of diblock copolymers to their nanostructuration and their selective degradation microporous. Microporous and Mesoporous Materials. 2011;140(1–3):34–39. DOI: 10.1016/j.micromeso.2010.10.007.
  9. Foss RP, Jacobson HW, Cripps HN, Sharkey WH. Block and graft copolymers of pivalolactone. II. ABA and ABA-g-A copolymers with dienes. Macromolecules. 1976;9(2):373–374. DOI: 10.1021/ma60050a043.
  10. Kennedy JP, Ivan B. Designed polymers by carbocationic macromolecular engineering: theory and practice. Munich: Hanser Pablishers; 1992. 240 p.
  11. Bergbreiter DE, Sung SD, Li J, Ortiz D, Hamilton PN. Designing polymers for biphasic liquid/liquid separations after homogeneous reactions. Organic Process Research and Development. 2004;8(3):461– 468. DOI: 10.1021/op034183w.
  12. Erdodi G, Ivan B. Novel amphiphilic conetworks composed of telechelic poly(ethylene oxide) and three-arm star polyisobutylene. Chemistry of Materials. 2004;16(6):959–962. DOI: 10.1021/cm0345063.
  13. Ren K, Zhang M, He J, Wu J, Ni P. Preparation of polymeric prodrug paclitaxel-poly(lactic acid)-b-polyisobutylene and its application in coatings of a drug eluting stent. ACS Applied Materials & Interfaces. 2015;7(21):11263–11271. DOI: 10.1021/acsami.5b01410.
  14. Morgan DL, Martinez-Castro N, Storey RF. End-quenching of TiCl 4 -catalyzed quasiliving polyisobutylene with alkoxybenzenes for direct chain end functionalization. Macromolecules. 2010;43(21):8724–8740. DOI: 10.1021/ma1015648.
  15. Morgan DL, Storey RF. Primary Hydroxy-Terminated Polyisobutylene via End-Quenching with a Protected N-(ω-Hydroxyalkyl)pyrrole. Macromolecules. 2010;43(3):1329–1340. DOI: 10.1021/ma9023608.
  16. Yang B, Parada CM, Storey RF. Synthesis, characterization, and photopolymerization of polyisobutylene phenol (meth)acrylate macromers. Macromolecules. 2016;49(17):6173–6185. DOI: 10.1021/acs.macromol.6b01289.
  17. Nikishev PA, Piskun YA, Vasilenko IV, Gaponik LV, Timashev PS, Akovatantseva AA, Kostyuk SV. Synthesis of Block Copoly mers of Styrene with D,L-Lactide by the Sequential Controlled Cationic Polymerization and Ring-Opening Anionic Polymerization. Polymer Science. Series B. 2017;59(6):413–423. Russian. DOI: 10.7868/S2308113917060079.
  18. Shiman DI, Vasilenko IV, Kostjuk SV. Cationic polymerization of isobutylene by AlCl 3 /ether complexes in non-polar solvents: Effect of ether structure on the selectivity of β-H elimination. Polymer. 2013;54(9):2235–2242. DOI: 10.1016/j.polymer.2013.02.039.
  19. Dimitrov P, Emert J, Hua J, Keki S, Faust R. Mechanism of Isomerization in the Cationic Polymerization of Isobutylene. Macromolecules. 2011;44(7):1831–1840. DOI: 10.1021/ma102645w.
  20. Yang B, Storey RF. End-quenching of tert-chloride-terminated polyisobutylene with alkoxybenzenes: comparison of AlCl 3 and TiCl 4 catalysts. Polymer Chemistry. 2015;6(20):3764 –3774. DOI: 10.1039/C5PY00269A.
  21. Peng YX, Cun LF, Dai HS, Liu JL. Cationic monomer-isomerization oligomerization of 2-methyl-2-butene. Polymer. 1996;37(17):3979–3982. DOI: 10.1016/0032-3861(96)00200-5.
  22. Pratt RC, Lohmeijer BGG, Long DA, Waymouth RM, Hedrich JL. Triazabicyclodecene: a simple bifunctional organocata lyst for acyl transfer and ring-opening polymerization of cyclic esters. Journal of the American Chemical Society. 2006;128(14):4556–4557. DOI: 10.1021/ja060662+.
  23. Nachtergael A, Coulembier O, Duboi P, Helvenstein M, Duez P, Blankert B. Organocatalysis paradigm revisited: are metal-free catalysts really harmless? Biomacromolecules. 2015;16(2):507–514. DOI: 10.1021/bm5015443.
  24. Jalabert M, Fraschini C, Prud’Homme RE. Synthesis and characterization of poly(L-lactide)s and poly(D-lactide)s of controlled molecular weight. Journal of Polymer Science. Part A: Polym. Chem. 2006;45(10):1944 –1955. DOI: 10.1002/pola.21960.
  25. Botiz I, Darling SB. Optoelectronics using block copolymers. Mater. Today. 2010;13(5):42–51. DOI: 10.1016/S1369-7021(10)70083-3.
  26. Tseng Y-C, Darling SB. Block copolymer nanostructures for technology. Polymers. 2010;2(4):470 – 489. DOI: 10.3390/polym2040470.
  27. Kwon Y, Faust R. Synthesis and characterization of poly(isobutylene-b-pivalolactone) diblock and poly(pivalolactone-b-isobutylene-b-pivalolactone) triblock сopolymers. Macromolecules. 2002;35(9):3348–3357. DOI: 10.1021/ma011739b.
Published
2019-08-27
Keywords: block copolymerization, polyisobutylene, polylactide, macroinitiator, alkylation
How to Cite
Nikishau, P. A., Ksendzov, E. A., Shiman, D. I., Gaponik, L. V., & Kostjuk, S. V. (2019). Synthesis of functionalized polyisobutylene and its block copolymers with D,L-lactide. Journal of the Belarusian State University. Chemistry, 2, 40-50. https://doi.org/10.33581/2520-257X-2019-2-40-50