Luminescent quantum dots encapsulated by zwitterionic amphi philic polymer: surface charge-dependent interaction with cancer cells

  • Elena A. Petrova Institute of Physiology, National Academy of Sciences of Belarus, 28 Akademičnaja Street, Minsk 220072, Belarus
  • Tatiana I. Terpinskaya Institute of Physiology, National Academy of Sciences of Belarus, 28 Akademičnaja Street, Minsk 220072, Belarus
  • Mikhail V. Artemyev Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Aleksandra A. Fedosyuk Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Aliaksandra V. Radchanka Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Artsiom V. Antanovich Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Anatol V. Prudnikau Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

Abstract

Here, we prepared water-soluble highly luminescent CdSe/ZnS quantum dots having different surface charge and examined how zeta potential of quantum dots affected their uptake by cancer cells. Water soluble quantum dots with varied zeta potential were prepared through encapsulation with amphiphilic polymer poly(maleic anhydride-alt-1-tetradecene) (PMAT) containing ziwitterions formed by spatially separated carboxyl and quaternary amino groups. Varying the ration of negatively charged carboxyl and positively charged quaternary amino-groups during chemical modification of PMAT we control the sign and magnitude of zeta potential of encapsulated quantum dots. Quantum dots having nearly equal amount of carboxyl and quaternary amino groups possess pH-controlled zeta potential which can vary from negative to positive value when pH changes from basic to acidic condition. Cellular uptake of encapsulated quantum dots has been found to be strongly dependent of their surface charge: positively charged quantum dots efficiently internalized by cells, while negatively charged adsorbed mostly at the cell membrane. Zwitterionic QDs do not demonstrate any charge-dependent cellular toxicity at least within few hours. Long-term incubation of cells stained with zwitterionic quantum dots results in the decrease of the fluorescence signal mainly due to the cell proliferation. 

Author Biographies

Elena A. Petrova, Institute of Physiology, National Academy of Sciences of Belarus, 28 Akademičnaja Street, Minsk 220072, Belarus

researcher

Tatiana I. Terpinskaya, Institute of Physiology, National Academy of Sciences of Belarus, 28 Akademičnaja Street, Minsk 220072, Belarus

researcher

Mikhail V. Artemyev, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

head of the laboratory

Aleksandra A. Fedosyuk, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

junior researcher

Aliaksandra V. Radchanka, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

student at the faculty of chemistry

Artsiom V. Antanovich, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

junior researcher

Anatol V. Prudnikau, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

junior researcher

References

  1. Liu J., Lau S. K., Varma V. A., et al. Multiplexed detection and characterization of rare tumor cells in Hodgkin’s lymphoma with multicolor quantum dots. Anal. Chem. 2010. Vol. 82, issue 14. P. 6237–6243. DOI: 10.1021/ac101065b.
  2. Yang X.-Q., Chen C., Peng C.-W., et al. Quantum dot-based quantitative immunofluorescence detection and spectrum analysis of epidermal growth factor receptor in breast cancer tissue arrays. Int. J. Nanomedicine. 2011. Vol. 6. P. 2265–2273. DOI: 10.2147/ IJN.S24161.
  3. Lee J., Kwon Y.-J., Choi Y., et al. Quantum Dot-Based Screening System for Discovery of G Protein-Coupled Receptor Agonists. ChemBioChem. 2012. Vol. 13, issue 10. P. 1503–1508. DOI: 10.1002/cbic.201200128.
  4. Kairdolf B. A., Smith A. M., Stokes T. H., et al. Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications. Annu. Rev. Anal. Chem. 2013. Vol. 6. P. 143–162. DOI: 10.1146/annurev-anchem-060908-155136.
  5. Pellegrino T., Manna L., Kudera S., et al. Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell: a General Route to Water Soluble Nanocrystals. Nano Lett. 2004. Vol. 4, issue 4. P. 703–707. DOI: 10.1021/nl035172j.
  6. Yu W. W., Chang E., Falkner J. C., et al. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J. Am. Chem. Soc. 2007. Vol. 129, issue 10. P. 2871–2879. DOI: 10.1021/ja067184n.
  7. Liu W., Choi H. S., Zimmer J. P., et al. Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications. J. Am. Chem. Soc. 2007. Vol. 129, issue 47. P. 14530–14531. DOI: 10.1021/ja073790m.
  8. Lin C.-A. J., Sperling R. A., Li J. K., et al. Design of an amphiphilic polymer for nanoparticle coating and functionalization. Small. 2008. Vol. 4, issue 3. P. 334 –341. DOI: 10.1002/smll.200700654.
  9. Smith A. M., Nie S. Minimizing the hydrodynamic size of quantum dots with multifunctional multidentate polymer ligands. J. Am. Chem. Soc. 2008. Vol. 130, issue 34. P. 11278–11279. DOI: 10.1021/ja804306c.
  10. Lees E. E., Nguyen T.-L., Clayton A. H. A., et al. The preparation of colloidally stable, water-soluble, biocompatible, semiconductor nanocrystals with a small hydrodynamic diameter. ACS Nano. 2009. Vol. 3, issue 5. P. 1121–1128. DOI: 10.1021/nn900144n.
  11. Pochard I., Boisvert J.-P., Persello J., et al. Surface charge, effective charge and dispersion/aggregation properties of nanoparticles. Polym. Int. 2003. Vol. 52, issue 4. P. 619–624. DOI: 10.1002/pi.1008.
  12. Villanueva A., Cañete M., Roca A. G., et al. The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology. 2009. Vol. 20, No. 11. P. 115103. DOI: 10.1088/0957-4484/20/11/115103.
  13. Wilhelm C., Billotey C., Roger J., et al. Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials. 2003. Vol. 24, issue 6. P. 1001–1011. DOI: 10.1016/S0142-9612(02)00440-4.
  14. Martin A. L., Bernas L. M., Rutt B. K., et al. Enhanced Cell Uptake of Superparamagnetic Iron Oxide Nanoparticles Functionalized with Dendritic Guanidines. Bioconjug. Chem. 2008. Vol. 19, issue 12. P. 2375–2384. DOI: 10.1021/bc800209u.
  15. Park K. D., Kim Y. S., Han D. K., et al. Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials. 1998. Vol. 19, issue 719. P. 851–859.
  16. Mei B. C., Susumu K., Medintz I. L., et al. Polyethylene glycol-based bidentate ligands to enhance quantum dot and gold nanoparticle stability in biological media. Nat. Protoc. 2009. Vol. 4, issue 3. P. 412–423. DOI: 10.1038/nprot.2008.243.
  17. Mattoussi H., Palui G., Na H. B. Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Adv. Drug Deliv. Rev. 2012. Vol. 64, issue 2. P. 138–166. DOI: 10.1016/j.addr.2011.09.011.
  18. Liu W., Howarth M., Greytak A. B., et al. Compact biocompatible quantum dots functionalized for cellular imaging. J. Am. Chem. Soc. 2008. Vol. 130, issue 4. P. 1274–1284. DOI: 10.1021/ja076069p.
  19. Park J., Nam J., Won N., et al. Compact and Stable Quantum Dots with Positive, Negative, or Zwitterionic Surface: Specific Cell Interactions and Non-Specific Adsorptions by the Surface Charges. Adv. Funct. Mater. 2011. Vol. 21, issue 9. P. 1558–1566. DOI: 10.1002/adfm.201001924.
  20. Aldeek F., Safi M., Zhan N., et al. Understanding the Self-Assembly of Proteins onto Gold Nanoparticles and Quantum Dots Driven by Metal-Histidine Coordination. ACS Nano. 2013. Vol. 7, issue 11. P. 10197–10210. DOI: 10.1021/nn404479h.
  21. Agarwal R., Domowicz M. S., Schwartz N. B., et al. Delivery and Tracking of Quantum Dot Peptide Bioconjugates in an Intact Developing Avian Brain. ACS Chem. Neurosci. 2015. Vol. 6, issue 3. P. 494–504. DOI: 10.1021/acschemneuro.5b00022.
  22. Yezhelyev M. V., Qi L., O’Regan R. M., et al. Proton-Sponge Coated Quantum Dots for siRNA Delivery and Intracellular Imaging. J. Am. Chem. Soc. 2008. Vol. 130, issue 28. P. 9006–9012. DOI: 10.1021/ja800086u.
  23. Wang W., Ji X., Kapur A., et al. A Multifunctional Polymer Combining the Imidazole and Zwitterion Motifs as a Biocompatible Compact Coating for Quantum Dots. J. Am. Chem. Soc. 2015. Vol. 137, issue 44. P. 14158–14172. DOI: 10.1021/jacs.5b08915.
  24. Chithrani B. D., Ghazani A. A., Chan W. C. W. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett. 2006. Vol. 6, issue 4. P. 662–668. DOI: 10.1021/nl052396o.
  25. Jiang X., Dausend J., Hafner M., et al. Specific Effects of Surface Amines on Polystyrene Nanoparticles in their Interactions with Mesenchymal Stem Cells. Biomacromolecules. 2010. Vol. 11, issue 3. P. 748–753. DOI: 10.1021/bm901348z.
  26. Silver J., Ou W. Photoactivation of Quantum Dot Fluorescence Following Endocytosis. Nano Lett. 2005. Vol. 5, issue 7. P. 1445–1449.
  27. Delehanty J. B., Medintz I. L., Pons T., et al. Self-Assembled Quantum Dot-Peptide Bioconjugates for Selective Intracellular Delivery. Bioconjug. Chem. 2006. Vol. 17, issue 4. P. 920–927. DOI: 10.1021/bc060044i.
  28. Jiang W., Kim B .Y. S., Rutka J. T., et al. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 2008. Vol. 3, issue 3. P. 145–150. DOI: 10.1038/nnano.2008.30.
  29. Jiang X., Röcker C., Hafner M., et al. Endo- and Exocytosis of Zwitterionic Quantum Dot Nanoparticles by Live HeLa Cells. ACS Nano. 2010. Vol. 4, issue 11. P. 6787–6797. DOI: 10.1021/nn101277w.
  30. Geelen T., Yeo S. Y., Paulis L. E. M., et al. Internalization of paramagnetic phosphatidylserine-containing liposomes by macrophages. J. Nanobiotechnol. 2012. Vol. 10. P. 37. DOI: 10.1186/1477-3155-10-37.
  31. Murphy J. E., Tacon D., Tedbury P. R., et al. LOX-1 scavenger receptor mediates calcium-dependent recognition of phosphatidylserine and apoptotic cells. Biochem. J. 2006. Vol. 393, issue 1. P. 107–115. DOI: 10.1042/BJ20051166.
  32. Yamashita T. Ca2+-dependent regulation of synaptic vesicle endocytosis. Neurosci. Res. 2012. Vol. 73, issue 1. P. 1–7. DOI: 10.1016/j.neures.2012.02.012.
  33. He C., Hu Y., Yin L., et al. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010. Vol. 31, issue 13. P. 3657–3666. DOI: 10.1016/j.biomaterials.2010.01.065.
  34. Gu Y., Sun W., Wang G., et al. Single Particle Orientation and Rotation Tracking Discloses Distinctive Rotational Dynamics of Drug Delivery Vectors on Live Cell Membranes. J. Am. Chem. Soc. 2011. Vol. 133, issue 15. P. 5720–5723. DOI: 10.1021/ja200603x.
  35. Song Q., Wang X., Hu Q., et al. Cellular internalization pathway and transcellular transport of pegylated polyester nanoparticles in Caco-2 cells. Int. J. Pharm. 2013. Vol. 445, issues 1/2. P. 58–68. DOI: 10.1016/j.ijpharm.2013.01.060.
  36. He B., Lin P., Jia Z., et al. The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells. Biomaterials. 2013. Vol. 34, issue 25. P. 6082–6098. DOI: 10.1016/j.biomaterials.2013.04.053.
  37. He B., Jia Z., Du W., et al. The transport pathways of polymer nanoparticles in MDCK epithelial cells. Biomaterials. 2013. Vol. 34, issue 17. P. 4309–4326. DOI: 10.1016/j.biomaterials.2013.01.100.
  38. Schornack P. A., Gillies R. J. Contributions of Cell Metabolism and H+ Diffusion to the Acidic pH of Tumors. Neoplasia. 2003. Vol. 5, issue 2. P. 135–145.
  39. Harguindey S., Orive G., Luis Pedraz J., et al. The role of pH dynamics and the Na+/H+ antiporter in the etiopathogenesis and treatment of cancer. Two faces of the same coin-one single nature. Biochim. Biophys. Acta. Rev. Cancer. 2005. Vol. 1756, issue 1. P. 1–24. DOI: 10.1016/j.bbcan.2005.06.004.
  40. Barar J., Omidi Y. Dysregulated pH in tumor microenvironment checkmates cancer therapy. BioImpacts. 2013. Vol. 3, issue 4. P. 149–162. DOI: 10.5681/bi.2013.036.
  41. Reshkin S. J., Greco M. R., Cardone R. A. Role of pHi, and proton transporters in oncogene-driven neoplastic transformation. Phil. Trans. R. Soc. B. 2014. Vol. 369, issue 1638. Article ID: 20130100. DOI: 10.1098/rstb.2013.0100.
  42. Amith S. R., Wilkinson J. M., Fliegel L. Assessing Na+/H+ exchange and cell effector functionality in metastatic breast cancer. Biochim. Open. 2016. Vol. 2. P. 16–23. DOI: 10.1016/j.biopen.2016.01.001.
  43. Corazzari I., Gilardino A., Dalmazzo S., et al. Localization of CdSe/ZnS quantum dots in the lysosomal acidic compartment of cultured neurons and its impact on viability: Potential role of ion release. Toxicol. Vitr. 2013. Vol. 27, issue 2. P. 752–759. DOI: 10.1016/j.tiv.2012.12.016.
  44. Mahendra S., Zhu H., Colvin V. L., et al. Quantum Dot Weathering Results in Microbial Toxicity. Environ. Sci. Technol. 2008. Vol. 42, issue 24. P. 9424–9430.
  45. Kauffer F.-A., Merlin C., Balan L., et al. Incidence of the core composition on the stability, the ROS production and the toxicity of CdSe quantum dots. J. Hazard. Mater. 2014. Vol. 268. P. 246–255. DOI: 10.1016/j.jhazmat.2014.01.029.
  46. Singh B. R., Singh B. N., Khan W., et al. ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots. Biomaterials. 2012. Vol. 33, issue 23. P. 5753–5767. DOI: 10.1016/j.biomaterials.2012.04.045.
  47. Chen L., Miao Y., Chen L., et al. The role of elevated autophagy on the synaptic plasticity impairment caused by CdSe/ZnS quantum dots. Biomaterials. 2013. Vol. 34, issue 38. P. 10172–10181. DOI: 10.1016/j.biomaterials.2013.09.048.
  48. Nguyen K. C., Willmore W. G., Tayabali A. F. Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells. Toxicology. 2013. Vol. 306. P. 114–123. DOI: 10.1016/j.tox.2013.02.010.
  49. Zhang T., Wang Y., Kong L., et al. Threshold Dose of Three Types of Quantum Dots (QDs) Induces Oxidative Stress Triggers DNA Damage and Apoptosis in Mouse Fibroblast L929 Cells. Int. J. Environ. Res. Public Health. 2015. Vol. 12, issue 10. P. 13435–13454. DOI: 10.3390/ijerph121013435.
  50. Lai L., Jin J.-C., Xu Z.-Q., et al. Necrotic cell death induced by the protein-mediated intercellular uptake of CdTe quantum dots. Chemosphere. 2015. Vol. 135. P. 240–249. DOI: 10.1016/j.chemosphere.2015.04.044.
  51. Busetto S., Trevisan E., Patriarca P., et al. A single-step, sensitive flow cytofluorometric assay for the simultaneous assessment of membrane-bound and ingested Candida albicans in phagocytosing neutrophils. Cytometry. 2004. Vol. 58A, issue 2. P. 201–206. DOI: 10.1002/cyto.a.20014.
  52. Avelar-Freitas B. A., Almeida V. G., Pinto M. C. X., et al. Trypan blue exclusion assay by flow cytometry. Braz. J. Med. Biol. Res. 2014. Vol. 47, issue 4. P. 307–315. DOI: 10.1590/1414-431X20143437.
  53. Terpinskaya T. I., Zhavnerko G. K., Yashin K. D., et al. Interaction of fluorescent semiconductor nanoparticles with tumor cells. Nanotechnol. Russ. 2015. Vol. 10, issues 3/4. P. 303–310. DOI: 10.1134/S1995078015020196.
  54. Ranjbarvaziri S., Kiani S., Akhlaghi A., et al. Quantum dot labeling using positive charged peptides in human hematopoetic and mesenchymal stem cells. Biomaterials. 2011. Vol. 32, issue 22. P. 5195–5205. DOI: 10.1016/j.biomaterials.2011.04.004.
  55. Bae Y. M., Park Y. I., Nam S. H., et al. Endocytosis, intracellular transport, and exocytosis of lanthanide-doped upconverting nanoparticles in single living cells. Biomaterials. 2012. Vol. 33, issue 35. P. 9080–9086. DOI: 10.1016/j.biomaterials.2012.08.039.
  56. Pi Q. M., Zhang W. J., Zhou G. D., et al. Degradation or excretion of quantum dots in mouse embryonic stem cells. BMC Biotechnol. 2010. Vol. 10. P. 36. DOI: 10.1186/1472-6750-10-36.
Published
2018-04-30
Keywords: quantum dots, zwitterion, zeta potential, nanoparticle uptake
Supporting Agencies Authors acknowledge partial financial support from CHEMREAGENTS and Convergence programs.
How to Cite
Petrova, E. A., Terpinskaya, T. I., Artemyev, M. V., Fedosyuk, A. A., Radchanka, A. V., Antanovich, A. V., & Prudnikau, A. V. (2018). Luminescent quantum dots encapsulated by zwitterionic amphi philic polymer: surface charge-dependent interaction with cancer cells. Journal of the Belarusian State University. Chemistry, 1, 3-13. Retrieved from https://journals.bsu.by/index.php/chemistry/article/view/1215