Deposition conditions and critical influence of organic additives on the structure and morphology of bismuth coatings

  • Daria I. Tishkevich Scientific and Practical Materials Research Centre, National Academy of Sciences of Belarus, 19 P. Broŭki Street, Minsk 220072, Belarus
  • Sergey S. Grabchikov Scientific and Practical Materials Research Centre, National Academy of Sciences of Belarus, 19 P. Broŭki Street, Minsk 220072, Belarus
  • Ludmila S. Tsybulskaya Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Vladislav S. Shendyukov Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Sergey S. Perevoznikov Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Sergey K. Poznyak Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Alexey V. Trukhanov Scientific and Practical Materials Research Centre, National Academy of Sciences of Belarus, 19 P. Broŭki Street, Minsk 220072, Belarus

Abstract

XRD analysis showed that bismuth coatings formed from perchlorate electrolyte have a rhombohedral type of crystal lattice, the most intense reflex of Bi is (012). The number of organic additives adding into the electrolyte leads changing in the texture of the coatings growth, for example, in presence of acridine yellow and safranin violet, the most intense Bi reflex becomes (110). Surface morphology investigation using a scanning electron microscope showed that coatings obtained without organic additives, as well as in the presence of safranin violet, have the lager crystallite sizes (tens of microns) with different growth textures. The crystallite sizes decrease in the presence of resorcinol and synthanol with the same Bi growth texture (012). The most fine-grained, dense and uniform coatings were obtained with simultaneous syntanol and resorcinol adding into the electrolyte.

Author Biographies

Daria I. Tishkevich, Scientific and Practical Materials Research Centre, National Academy of Sciences of Belarus, 19 P. Broŭki Street, Minsk 220072, Belarus

junior researcher at the laboratory of magnetic films physics

Sergey S. Grabchikov, Scientific and Practical Materials Research Centre, National Academy of Sciences of Belarus, 19 P. Broŭki Street, Minsk 220072, Belarus

doctor of science (physics and mathematics); chief researcher at the laboratory of magnetic films physics

Ludmila S. Tsybulskaya, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

PhD (chemistry); leading researcher at the laboratory of thin films chemistry

Vladislav S. Shendyukov, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

junior researcher at the laboratory of thin films chemistry

Sergey S. Perevoznikov, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

researcher at the laboratory of thin films chemistry

Sergey K. Poznyak, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

PhD (chemistry); leading researcher at the laboratory of thin films chemistry

Alexey V. Trukhanov, Scientific and Practical Materials Research Centre, National Academy of Sciences of Belarus, 19 P. Broŭki Street, Minsk 220072, Belarus

PhD (physics and mathematics); leading researcher at the laboratory of magnetic films physics

References

  1. Švancara I., Prior C., Hočevar S. B., et al. A Decade with Bismuth-Based Electrodes in Electroanalysis. Electroanalysis. 2010. Vol. 22, issue 13. P. 1405–1420. DOI: 10.1002/elan.200970017.
  2. Wang J. Carbon-Nanotube Based Electrochemical Biosensors: a Review. Electroanalysis. 2005. Vol. 17, issue 1. P. 7–14. DOI: 10.1002/elan.200403113.
  3. Królicka A., Bobrowski A. Bismuth Film Electrode for Adsorptive Stripping Voltammetry – electrochemical and microscopic study. Electrochem. Commun. 2004. Vol. 6, issue 2. P. 99 –104. DOI: 10.1016/j.elecom.2003.10.025.
  4. Ashrafi A. M., Vytřas K. Codeposited Antimony-Bismuth Film Carbon Paste Electrodes for Electrochemical Stripping Determination of Trace Heavy Metals. Int. J. Electrochem. Sci. 2013. Vol. 8. P. 2095–2103.
  5. Walker R. Internal Stress in Electrodeposited Metallic Coatings. London : Industrial News-paper, 1968.
  6. Sayed S. M., Jüttner K. Electrocatalysis of Oxygen and Hydrogen Peroxide Reduction by UPD of Bismuth on Poly- and Mono- crystalline Gold Electrodes in Acid Solutions. Electrochim. Acta. 1983. Vol. 28. P. 1635–1641. DOI: 10.1016/0013-4686(83)85228-1.
  7. Chen C. H., Kepler K. D., Gewirth A. A., et al. Electrodeposited Bismuth Monolayers on Gold (111) Electrodes: Comparison of Surface X-ray Scattering, Scanning Tunneling Microscopy, and Atomic Force Microscopy Lattice Structures. J. Phys. Chem. 1993. Vol. 97. P. 7290 –7294. DOI: 10.1021/j100130a028.
  8. Campbell S. A., Parsons R. Effect of Bi and Sn Adatoms on Formic Acid and Methanol Oxidation at Well Defined Platinum Surfaces. J. Chem. Soc. Faraday Trans. 1992. Vol. 88. P. 833–841. DOI: 10.1039/ft9928800833.
  9. Chang S. C., Ho Y., Weaver M. J. Application of Real-time Infrared Spectroscopy to Electrocatalysis at Bimetallic Surfaces: I. Electrooxidation of Formic Acid and Methanol on Bismuth-modified Pt (111) and Pt (100). Surf. Sci. Vol. 265, issues 1–3. P. 81– 94. DOI: 10.1016/0039-6028(92)90489-S.
  10. Clavilier J., Fernandez-Vega A., Feliu J. M., et al. Heterogeneous Electrocatalysis on Well Defined Platinum Surfaces Modified by Controlled Amounts of Irreversibly Adsorbed Adatoms. Part I. Formic Acid Oxidation on the Pt(111) – Bi System. J. Electroanal. Chem. Interfacial Electrochem. 1989. Vol. 258, issue 1. P. 89–100. DOI: 10.1016/0022-0728(89)85164-2.
  11. Herrero E., Fernandez-Vega A., Feliu J. M., et al. Poison Formation Reaction From Formic Acid and Methanol on Pt(111) Electrodes Modified by Irreversibly Adsorbed Bi and As. J. Electroanal. Chem. 1993. Vol. 350, issues 1/2. P. 73–88. DOI: 10.1016/00220728(93)80197-P.
  12. Smith S. P. E., Abruna H. D. Effects of the Electrolyte Identity and the Presence of Anions on the Redox Behavior of Irreversibly Adsorbed Bismuth on Pt (111). J. Phys. Chem. B. 1998. Vol. 102, issue 18. P. 3506 –3511. DOI: 10.1021/jp9804648.
  13. Li L., Zhang Y., Li G., et al. A route to fabricate single crystalline bismuth nanowire arrays with different diameters. Chem. Phys. Lett. 2003. Vol. 378, issues 3/4. P. 244 – 249. DOI: 10.1016/S0009-2614(03)01264-8.
  14. Chatterjee K., Suresh A., Ganguly S., et al. Synthesis and characterization of an electro-deposited polyaniline-bismuth telluride nanocomposite – a novel thermoelectric material. Mater. Charact. 2009. Vol. 60, issue 12. P. 1597–1601. DOI: 10.1016/j.matchar.2009.09.012.
  15. Cho S., Kim Y., Olafsen L. J., et al. Large magnetoresistance in post-annealed polycrystalline and epitaxial Bi thin films. J. Magn. Magn. Mater. 2002. Vol. 239, issues 1–3. P. 201–203. DOI: 10.1016/S0304-8853(01)00557-1.
  16. Jiang S., Huang Y. H., Luo F., et al. Synthesis of bismuth with various morphologies by electrodeposition. Inorg. Chem. Commun. 2003. Vol. 6, issue 6. P. 781–785. DOI: 10.1016/S1387-7003(03)00104-7.
  17. Tolutis R. A., Balevičius S. Study of large magnetoresistance of thin polycrystalline Bi films annealed at critical temperatures. Phys. Status Solidi A. 2006. Vol. 203, issue 3. P. 600 – 607. DOI: 10.1002/pssa.200521019.
  18. Lu M., Zieve R. J., van Hulst A., et al. Low-temperature Electrical-transport Properties of Single-crystal Bismuth Films Under Pressure. Phys. Rev. B. 1996. Vol. 53. P. 1609 –1615. DOI: 10.1103/PhysRevB.53.1609.
  19. Ziegler J. P. Status of Reversible Electrodeposition Electrochromic Devices. Solar Energy Mater. Solar Cells. 1999. Vol. 56, issues 3/4. P. 477– 493. DOI: 10.1016/S0927-0248(98)00192-5.
  20. Córdoba de Torresi S. I., Carlos I. A. Optical Сharacterization of Bismuth Reversible Electrodeposition. J. Electroanal. Chem. 1996. Vol. 414, issue 1. P. 11–16. DOI: 10.1016/0022-0728(96)04638-4.
  21. Bard A. J. (ed.). Encyclopedia of Electrochemistry of the Elements. New York : Marcel Dekker, 1986. Vol. IX, part B.
  22. Yang F. Y., Liuk K., Hong K., et al. Large Magnetoresistance of Electrodeposited Single-Crystal Bismuth Thin Films. Science. 1999. Vol. 284, issue 5418. P. 1335–1337. DOI: 10.1126/science.284.5418.1335.
  23. El-Fiki S., El Kameesy S. U., Nashar D. E. El., et al. Influence of Bismuth Contents on Mechanical and Gamma Ray Attenuation Properties of Silicone Rubber Composite. Int. J. Adv. Res. 2015. Vol. 3, issue 6. P. 1035–1041.
  24. La Fontaine A., Keast V. J. Compositional distributions in classical and lead-free brasses. Mater. Charact. 2006. Vol. 57, issues 4/5. P. 424 – 429. DOI: 10.1016/j.matchar.2006.02.005.
  25. Yang M., Hu Z. Electrodeposition of Bismuth Onto Glassy Carbon Electrodes From Nitrate Solutions. J. Electroanal. Chem. 2005. Vol. 583, issue 1. P. 46 –55. DOI: 10.1016/j.jelechem.2005.04.019.
  26. Vereecken P. M., Rodbell K., Ji C. X., et al. Electrodeposition of Bismuth Thin Films on n-GaAs(110). Appl. Phys. Lett. 2005. Vol. 86, issue 12. P. 121916. DOI: 10.1063/1.1886248.
  27. Vereecken P. M., Sun L., Searson P. C., et al. Magnetotransport Properties of Bismuth Films on p-GaAs. J. Appl. Phys. 2000. Vol. 88, issue 11. P. 6529. DOI: 10.1063/1.1323537.
  28. Vereecken P. M., Searson P. C. Electrochemical Deposition of Bi on GaAs(100). J. Electrochem. Soc. 2001. Vol. 148, issue 11. P. C733 – C739. DOI: 10.1149/1.1406493.
  29. Jeffrey C. A., Harrington D. A., Morin S. Insitu Scanning Tunneling Microscopy of Bismuth Electrodeposition on Au (111) Surfaces. Surf. Sci. 2002. Vol. 512, issues 1/2. P. L367 – L372. DOI: 10.1016/S0039-6028(02)01685-0.
  30. Piontelli R., Poli G. Gazz. Chim. Ital. 1949. Vol. 79. P. 981. 31. Frank F. C. On Miller – Bravais Indices and Four-dimensional Vectors. Acta Cryst. 1965. Vol. 18. P. 862–866. DOI: 10.1107/ S0365110X65002116.
  31. Frank F. C. On Miller – Bravais Indices and Four-dimensional Vectors. Acta Cryst. 1965. Vol. 18. P. 862–866. DOI: 10.1107/S0365110X65002116.
Published
2018-04-30
Keywords: electrodeposition, bismuth, perchloric electrolyte, organic additives, coatings
Supporting Agencies The work was carried out with financial support of Belarusian Republican Foundation for Fundamental Research (grant No. T17M-046).
How to Cite
Tishkevich, D. I., Grabchikov, S. S., Tsybulskaya, L. S., Shendyukov, V. S., Perevoznikov, S. S., Poznyak, S. K., & Trukhanov, A. V. (2018). Deposition conditions and critical influence of organic additives on the structure and morphology of bismuth coatings. Journal of the Belarusian State University. Chemistry, 1, 14-21. Retrieved from https://journals.bsu.by/index.php/chemistry/article/view/1216