Electrochemical plating of Sn – Ag alloy applicable as a solder

  • Olga N. Vrublevskaya Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Marina A. Shikun Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Tatiana N. Vorobyova Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus; Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Anna M. Rabenok Minsk State Regional Lyceum, 18 Serova Street, Minsk 220000, Belarus
  • Angelina S. Gunich Minsk State Regional Lyceum, 18 Serova Street, Minsk 220000, Belarus
  • Svetlana G. Melnikova Minsk State Regional Lyceum, 18 Serova Street, Minsk 220000, Belarus

Abstract

The additions of hydroquinone, 1,4-butandiol and citrate ions to the known strongly acidic sulfate-thiourea solution for electrochemical deposition of Sn – Ag low-melting alloy are proposed, which provide to obtain the alloys of composition near to the eutectic one. It is shown that varying the content of the additions and current density it is possible to control tin content in the alloy in the range of 73–96 wt. %, the rate of coatings deposition from 2.7 to 15.6 µm/h, the total current yield in the range of 55–99 %. It is determined that coatings consist of fine silver grains less than 0.5 µm in size and lamellar tin crystals 3–20 µm in size, increasing with the rise of tin fraction in the alloy. According to thermal analysis data the maximum of endothermic peak in DSC curves corresponding to the melting of Sn – Ag alloy with tin content over 73 wt. % is found at 223.5 °С, that is close to the melting temperature of the eutectic. The area of this peak increases with tin quota in the alloy. Sn – Ag coatings containing more than 93 wt. % of tin, similar in composition to the eutectic are characterized by high spreading of the molten solder even better as compared with tin, which makes these coatings promising for soldering.

Author Biographies

Olga N. Vrublevskaya, Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

PhD (chemistry), docent; scientific secretary

Marina A. Shikun, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

masters degree student at the department of inorganic chemistry, faculty of chemistry

Tatiana N. Vorobyova, Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus; Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

doctor of science (chemistry), full professor; chief researcher , Institute for Physical Chemical Problems, Belarusian State University; professor at the department of in organic chemistry, faculty of chemistry, Belarusian State University

Anna M. Rabenok, Minsk State Regional Lyceum, 18 Serova Street, Minsk 220000, Belarus

scholar

Angelina S. Gunich, Minsk State Regional Lyceum, 18 Serova Street, Minsk 220000, Belarus

scholar

Svetlana G. Melnikova, Minsk State Regional Lyceum, 18 Serova Street, Minsk 220000, Belarus

teacher

References

  1. Lee L. M., Mohamad A. A. Interfacial Reaction of Sn – Ag – Cu Lead-Free Solder Alloy on Cu: A Review. Adv. Mater. Sci. Eng. 2013. Vol. 2013. Article ID: 123697. DOI: 10.1155/2013/123697.
  2. Grigoriev V. [Lead-free technology – the requirement of time or the whim of legislation from the environment]. Electron. Compon. 2001. No. 6. URL: echemistry.ru/assets/files/stati/bessvincovaya_tehnologiya.pdf (date of access: 03.12.2017) (in Russ.).
  3. Zhao Q., Chen Z., Hu A., et al. Formation of SnAg solder bump by multilayer electroplating. Microelectron. Eng. 2013. Vol. 106. P. 33–37. DOI: 10.1016/j.mee.2013.a.055.
  4. Nikolskii B. P., Rabinovich V. A. (eds). Chemical handbook : in 7 vol. Moscow ; Leningrad : Chemistry, 1965. Vol. 3 : Chemical equilibrium and kinetics, properties of solutions. Electrode processes (in Russ.).
  5. Vyacheslavov P. M. [Electrolytic deposition of alloys]. Leningrad : Mechanical engineering, 1985. Issue 5 (in Russ.).
  6. Tretyakov Y. D. (ed.). Inorganic chemistry : in 3 vol. Moscow : Academy, 2004. Vol. 2 : Khimiya neperekhodnykh elementov (in Russ.).
  7. Wei L. X., Haseeb A. S. M. A., Yingxin G. Effects of thiourea and gelatin on the electrodeposition of Sn – Ag solder alloy. 4 th Asia Symposium on Quality Electronic Design (Penang, Malaysia, 10 –11 July, 2012). P. 291–296. DOI: 10.1109/ACQED.2012.6320518.
  8. Djokić S. Synthesis and antimicrobial activity of silver citrate complexes. Bioinorg. Сhem. Appl. 2008. Vol. 2008. Article ID: 436458. DOI: 10.1155/2008/436458.
  9. Sherlock J. C., Britton S. C. Complex Formation and Corrosion Rate for Tin in Fruit Acids. Br. Corros. J. 1972. Vol. 7, issue 4. P. 180–183. DOI: 10.1179/000705972798322946.
  10. Lanin V. L., Dostanko A. P., Khmyl’ A. A. [Technology of radio electronic devices]. Minsk : Belarusian State University of Informatics and Radioelectronics, 2013 (in Russ.).
Published
2018-05-01
Keywords: electrochemical deposition, alloy, tin, silver, solder, additions to electrolyte
How to Cite
Vrublevskaya, O. N., Shikun, M. A., Vorobyova, T. N., Rabenok, A. M., Gunich, A. S., & Melnikova, S. G. (2018). Electrochemical plating of Sn – Ag alloy applicable as a solder. Journal of the Belarusian State University. Chemistry, 1, 83-91. Retrieved from https://journals.bsu.by/index.php/chemistry/article/view/1225