Novel membranes based on cellulose for gas separation and green method for their preparing

  • Valeryia B. Filistovich Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Tatsiana A. Savitskaya Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Irina M. Kimlenka Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Dzmitry D. Hrynshpan Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Svetlana E. Makarevich Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Vladimir V. Teplyakov A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninskii Avenue, Moscow 119991, Russia
  • Daria A. Syrtsova A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninskii Avenue, Moscow 119991, Russia

Abstract

A «green» method of obtaining gas separation composite membranes from cellulose solutions and its mixtures with chitosan in orthophosphoric acid is proposed for industrial use, and differs from the viscose method of producing cellophane and other known methods for producing cellulose gas separation membranes without gaseous emissions and wastewater. It is shown that new composite cellulose membranes on a viscose fabric substrate are characterized by high productivity and selectivity for O2/ N2 pairs, comparable to the values obtained for known membranes made of synthetic polymers, as well as increased mechanical strength. The developed composite membranes demonstrate an inverse selectivity for the CH4/CO2 pair, which is not typical for gas separation membranes described in the literature with cellulose-based selective layers.

Author Biographies

Valeryia B. Filistovich, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

student at the faculty of chemistry

Tatsiana A. Savitskaya, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (chemistry); professor at the department of physical chemistry, faculty of chemistry

Irina M. Kimlenka, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (chemistry); associate professor at the department of radiation chemistry and chemical-pharmaceutical technologies, faculty of chemistry

Dzmitry D. Hrynshpan, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

doctor of science (chemistry), full professor; head of the laboratory for cellulose solutions and products of their treatment

Svetlana E. Makarevich, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

senior researcher at the laboratory of cellulose solutions and products

Vladimir V. Teplyakov, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninskii Avenue, Moscow 119991, Russia

doctor of science (chemistry), full professor; head of the laboratory of physico-chemistry of membrane processes

Daria A. Syrtsova, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninskii Avenue, Moscow 119991, Russia

PhD (chemistry); senior researcher at the laboratory of physico-chemistry of membrane processes

References

  1. Ichwan M, Son TW. Preparation and characterization of dense cellulose films for membrane application. Journal of Applied Polymer Science. 2012;124:1409–1428. DOI: 10.1002/app.35104.
  2. Eldin MSM. Cellophane Membranes. In: Drioli E, Giorno L, editors. Encyclopedia of Membranes. Heidelberg, Berlin: Springer; 2014. p. 2279–2280. DOI: 10.1007/978-3-642-40872-4_1857-1.
  3. Klemm D, Heublein B, Fink H-P, Bohn A. Cellulose: Fascinating Biopolymer and sustainable raw material. Angewandte Che­mie. International Edition. 2005;44:3358–3393. DOI: 10.1002/anie.200460587.
  4. Jie X, Cao Y, Lin B, Yuan Q. Gas Permeation performance of Cellulose hollow fiber membranes made from the cellulose/N-methylmorpholine-N-oxide/H 2 O system. Journal of Applied Polymer Science. 2004;91:1873–1880. DOI: 10.1002/app.2385.
  5. Sen S, Martin JD, Agruropoluos DS. Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustainable Chemical and Engineering. 2013;8:858–870. DOI: 10.1021/sc400085a.
  6. Yang Q, Fukuzumi H, Saito Ts, Isogai A, Zhang L. Transparent Cellulose films with high barrier properties fabricated from aqueous alkali/urea solutions. Biomacromolecules. 2011;12:2766–2771. DOI: 10.1021/bm200766v.
  7. Xu Q, Chen C, Rosswutm K, Yao T. A facile route to prepare cellulose-based films. Carbohydrate Polymers. 2016;149:274–281. DOI: 10.1016/j.carbpol.2016.04.114.
  8. Zhang L, Yang QG, Fang W. Regenerated cellulose membrane from cuoxam/zinkoxene blend. Journal of Membrane Science. 1991;56:207–215. DOI: 10.1016/S0376-7388(00)80809-1.
  9. Li NN, Fane AG, Ho WSW, Matsuura T, editors. Advanced Membrane Technology and Applications. Hoboken: John Wiley and Sons; 2008. 940 p.
  10. Nussbaumer D, Hörl H-H, inventors; Sartorius Stedim Biotech GmbH, assignee. Cellulose hydrate ultrafiltration membranes and method for their production. United States Patent 7,422,686 B2. 2008 September 9.
  11. Tucelli R, McGrath PV, inventors. Cellulose Ultrafiltration membrane. United States Patent 5,522,991. 1996 June 4.
  12. Grinshpan DD, Gonchar AN, Tsygankova NG, Makarevich SE, Savitskaya TA, Sheimo EV. Rheological properties of concentrated solutions of cellulose and its mixtures with other polymers in orthophasphoric acid. Journal of Engineering Physics Thermophysics. 2011;84:594. DOI: 10.1007/s10891-011-0510-z.
  13. Grinshpan DD, Tsygankova NG, Makarevich SE, Savitskaya TA, Serebryakov GF, Vovk VI, et al. [Self-extinguishing fibers and their composite materials based on cellulose and chitosan]. Neftekhimicheskii kompleks. 2017;1:13–15.
  14. Gryshpan DD, Savitskaya TA, Kaputsky FN, Kumachev AI, Kozlovsky AM. [Properties of composite membranes and cellulose-polyacrylonitrile solutions]. Zhurnal prikladnoi khimii. 1988;6:1342–1347. Russian.
  15. Efimova EA, Syrtsova DA, Teplyakov VV. Gas permeability through graphite foil: the influence of physical density, membrane orientation and temperature. Separation and Purification Technology. 2017;179:467–474. DOI: 10.1016/j.seppur.2017.02.023.
  16. Becker E, Beoschoten K, Brigoli B, Jensen R, Massignon D, Nathrath N, et al. Less and Chemical Carge. Berlin, Heidelberg, New York: Springer; 1979. Russian edition: Becker E, Beoschoten K, Brigoli B, Jensen R, Massignon D, Nathrath N, et al. Obogashchenie urana. Moscow: Energoatomizdat; 1983.
  17. Herrera MA, Mathew AP, Oksman K. Gas permeability and selectivity of cellulose nanocrystals films (layers) deposited by spincoating. Carbohydrate Polymers. 2014;112:494–501. DOI: 10.1016/j.carbpol.2014.06.036.
  18. Yampolskiy Yu, Finkelshtein Eu, editors. Membrane materials for gas and Vapor Separation: synthesis and Application of silicon-containing polymers. Hoboken: Wiley; 2017. p. 420.
  19. Brandrup J, Immerguten EH, Grulke EA, editors. Polymer Handbook. New York, Chichester, Weinheim, Brisbane, Singapore, Toronto: John Willey and sons; 1989. p. 1904.
  20. Mulder M. Basic principles of membrane technology. Dodrecht, Boston, London: Kluwer academic pub-lishers; 1991. Russian edition: Mulder M. Vvedenie v membrannuyu tekhnologiyu. Alent’ev AY, Yampol’skaya GP, translators. Moscow: Mir; 1999.
  21. Ju X, Bowden M, Brown E, Zhang X. An improved X-ray diffraction method for cellulose crystallinity measurement. Carbo­hydrate Polymers. 2015;123:476–481. DOI: 10.1016/j.carbpol.2014.12.071.
  22. Dehant I, Dants R, Kimmer V, Shmol’ke R. Infrakrasnaya spektroskopiya polimerov [Infrared spectroscopy of polymers]. Arkhangel’skii VV, translator. Moscow: Khimiya; 1976. Russian.
  23. Sanjari AJ, Asghari M. A Review on Chitosan Utilization in Membrane Synthesis. ChemBioEng Reviews. 2016;3:134–158. DOI: 10.1002/cben.201500020.
Published
2019-02-19
Keywords: cellulose, chitosan, orthophosphoric acid, composite membranes, gas separation, oxygen, nitrogen, methane, carbon dioxide, fabric support, two-layer film
Supporting Agencies The work was financially supported by Belarusian Republican Foundation for Fundamental Research (grant No. X18P-176) and Russian Foundation for Basic Research (grant No. 18-53-00017).
How to Cite
Filistovich, V. B., Savitskaya, T. A., Kimlenka, I. M., Hrynshpan, D. D., Makarevich, S. E., Teplyakov, V. V., & Syrtsova, D. A. (2019). Novel membranes based on cellulose for gas separation and green method for their preparing. Journal of the Belarusian State University. Chemistry, 1, 66-77. https://doi.org/10.33581/2520-257X-2019-1-66-77