Synthesis and structure of copper(II) complexes with 1-iso-propyl-1Н-1,2,4-triazole

  • Mikhail M. Degtyarik Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Andrey N. Bogatikov Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Sergei V. Voitekhovich Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus https://orcid.org/0000-0002-7015-5062
  • Alexander S. Lyakhov Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Ludmila S. Ivashkevich Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Yuri V. Grigoriev Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus https://orcid.org/0000-0002-8153-835X
  • Oleg A. Ivashkevich Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

Abstract

A novel facile method for the synthesis of 1-iso-propyl-1H-1,2,4-triazole (L) is described. This method is based on alkylation of 1,2,4-triazole with isopropyl alcohol in sulfuric acid media. It allows to synthesize the target product selectively with a yield of near 98 %. New coordination compounds [CuL22О)2Cl2] and [СuL4Cl2] were synthesized by the interaction of 1-iso-propyl-1H-1,2,4-triazole with copper(II) chloride dihydrate. Composition and structure of prepared complexes were studied by elemental analysis, X-ray diffraction analysis and IR spectroscopy. Both coordination compounds were found to be mononuclear complexes with octahedral coordination of copper atoms. Ligand L shows monodentate coordination through the triazole ring N4 atom. The analysis of the changes observed in the IR-spectrum of L under coordination with CuII atom was carried out. It was shown that IR spectroscopy can be used in order to study some structural peculiarities of azole complexes, in particular presence of bounded or coordinated water molecules and hydrogen bonds as well as localization of coordination bonds.

Author Biographies

Mikhail M. Degtyarik, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

PhD (chemistry); leading researcher at the laboratory for chemistry of condensed systems

Andrey N. Bogatikov , Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

associate professor at the department of general chemistry and methods of teaching chemistry, faculty of chemistry

Sergei V. Voitekhovich , Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

PhD (chemistry); leading researcher at the laboratory for chemistry of condensed systems

Alexander S. Lyakhov , Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

PhD (chemistry), docent; leading researcher at the laboratory for chemistry of condensed systems

Ludmila S. Ivashkevich , Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

PhD (chemistry), docent; head of the laboratory of physico-chemical investigations

Yuri V. Grigoriev , Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

PhD (chemistry); head of the laboratory for chemistry of condensed systems

Oleg A. Ivashkevich , Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

academician of National Academy of Sciences of Belarus, doctor of science (chemistry), professor; first vice-rector

References

  1. Aromi G, Barrios LA, Roubeau O, Gamez P. Triazoles and tetrazoles: prime ligands to generate remarkable coordination materials. Coordination Chemistry Reviews. 2011;255(5‒6):485–546. DOI: 10.1016/j.ccr.2010.10.038.
  2. Garnovskii AD, Garnovskii DА, Vasil’chenko IS, Burlov AS, Sadimenko AP, Sadekov ID. Competitive coordination: ambident ligands in the modern chemistry of metal complexes. Uspekhi khimii. 1997;66(5):434 – 462. Russian.
  3. Lavrenova LG, Shakirova OG. Spin crossover and thermochromism of iron(II) coordination compounds with 1,2,4-triazoles and tris(pyrazol-1-yl)methanes. European Journal of Inorganic Chemistry. 2013;2013(5–6):670–682. DOI: 10.1002/ejic.201200980.
  4. Haasnoot JG. Mononuclear, oligonuclear and polynuclearmetal coordination compounds with 1,2,4-triazole derivatives as ligands. Coordination Chemistry Reviews. 2000;200 –202:131‒185. DOI: 10.1016/S0010-8545(00)00266-6.
  5. Lavrenova LG, Virovets AV, Peresypkina EV, Strekalova AD, Piryazev DA, Daletsky VA, et al. Spin-crossover in the complex of iron(II) nitrate with tris(3,5-dimethylpyrazol-1-yl)methane. Inorganica Chimica Acta. 2012;382(15):1–5. DOI: 10.1016/j.ica.2011.11.030.
  6. Minkin VI. Bistable organic, organometallic and coordination compounds for molecular electronics and spintronics. Izvestiya Akademii nauk. Seriya khimicheskaya. 2008;4:673–703. Russian.
  7. Berezovskii GA, Lavrenova LG. Thermodynamic properties of spin crossover 3d-metal coordination compounds. Journal of Thermal Analysis and Calorimetry. 2011;103(3):1063‒1072. DOI: 10.1007/s10973-010-1043-y.
  8. Peresypkina EV, Smolentsev AI, Sanchiz J, Gil-Hernández B, Potapov АS, Khlebnikov АI, et al. Bis(benzotriazol-1-yl) methane as a linker in the assembly of new copper(II) coordination polymers: synthesis, structure and investigations. Polyhedron. 2012;48(14):253−263. DOI: 10.1016/j.poly.2012.08.072.
  9. Ovcharenko VI, Sagdeev RZ. Molecular ferromagnets. Uspekhi khimii. 1999;68(5):381‒400. Russian. DOI: 10.1070/RC1999v068n05ABEH000513.
  10. Jeon le-R, Clérac R. Controlled association of single-molecule magnets (SMMs) into coordination networks: towards a new generation of magnetic materials. Dalton Transactions. 2012;41(32):9569–9586. DOI: 10.1039/C2DT30906H.
  11. Carlin R. Magnetochemistry. Berlin: Springer-Verlag; 1986. 328 p. DOI: 10.1007/978-3-642-70733-9. Russian edition: Carlin R. Magnetokhimiya. Sobolev SS, Lapushkin GI, translators. Moscow: Mir; 1989. 400 p.
  12. Voitekhovich SV, Degtyarik MM, Lyakhov AS, Ivashkevich LS, Ivashkevich OA. Copper(II) Halide Complexes with 1-tert-Butyl-1H-1,2,4-triazole and 1-tert-butyl-1H-tetrazole. Zeitschrift für anorganische und allgemeine Chemie. 2018;644:100–108. DOI: 10.1002/zaac.201700363.
  13. Burla MC, Caliandro R, Carrozzini B, Cascarano GL, Cuocci C, Giacovazzo C, et al. Crystal structure determination and refinement via SIR2014. Journal of Applied Crystallography. 2015;48:306–309. DOI: 10.1107/S1600576715001132.
  14. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry. 2015;71:3–8. DOI: 10.1107/S2053229614024218.
  15. Spek AL. Structure validation in chemical crystallography. Acta Crystallographica. 2009;D65:148–155. DOI: 10.1107/S090744490804362X.
  16. Bulger PG, Cottrell IF, Cowden CJ, Davies AJ, Dolling U-H. Tetrahedron Letters. 2000;41(8):1297–1301. DOI: 10.1016/S0040-4039(99)02272-8.
  17. Heffron TP, Heald RA, Ndubaku C, Wei B, Augistin M, Do S, Edgar K, et al. The Rational Design of Selective Benzoxazepin Inhibitors of the α-Isoform of Phosphoinositide 3-Kinase Culminating in the Identification of (S)-2-((2-(1-isopropyl-1H-1,2,4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl)oxy)propanamide (GDC-0326). Journal of Medicinal Chemistry. 2016;59(3):985‒1002. DOI: 10.1021/acs.jmedchem.5b01483.
  18. Slovokhotov YuL, Struchkov YuT, Polinsky AS, Pshezhetsky VS, Ermakova TG. Вichloro-bis(1-ethyl-1,2,4-triazole)copper(II). Crystal structure communications. 1981;10(2):577–582.
  19. Nakamoto K. Infrared and raman spectra of inorganic and coordination compounds. New York: John Wiley and Sons; 1986. 479 p. Russian edition: Nakamoto K. IK-spektry i spektry KR neorganicheskikh i koordinatsionnykh soedinenii. Khristenko LV, translator. Moscow: Mir; 1991. 536 p.
  20. Greenstein VYa, Strazdin AA, Greenvalde AK. Infrared absorption spectra of some C-halogen derivatives of 1,2,4-triazole. Khimiya geterotsiklicheskikh soyedineniy. 1970;2:248–258. Russian.
  21. Saparova DS, Bogatikov AN, Matulis Vadim E, Degtyarik MM, Ivashkevich OA. IR-spectrum of monometallic copper(II) halogenide complexes with 1-tert-butyl-1,2,4-triazole: experimental and quantum chemical studies. Journal of the Belarusian State University. Chemistry. 2019;2:12–20. Russian. DOI: 10.33581/2520-257X-2019-2-12-20.
  22. Billes F, Endrédi H, Keresztury G. Vibrational spectroscopy of triazoles and tetrazole. Journal of Molecular Structure: THEOCHEM. 2000;530(1‒2):183‒200. DOI: 10.1016/S0166-1280(00)00340-7.
  23. Klingele HM, Brooker S. The coordination chemistry of 4-substituted 3,5-di(2-pyridyl)-4H-1,2,4-triazoles and related ligands. Coordination Chemistry Reviews. 2003;24(1):119–132. DOI: 10.1016/50010-8545(03)00049-3.
  24. Vreugdenhil W, Haasnoot JG, Reedijk J, Wood JS. Synthesis, Spectroscopy and X-ray Structure of Hexakis(p-3-methyl-4-ethyl-1,2,4-triazolo-N′,N)tetraaquatricopper(II) Hexakis(trifluoromethylsulfonate). Inorganica Chimica Acta. 1990;167:109–113. DOI: 10.1016/S0020-1693(00)83943-2.
  25. Lider EV, Peresypkina EV, Lavrenova LG, Sheludyakova LA, Smolentsev AI, Yaroshenko TI, et al. Synthesis and Study of Cobalt(II), Nickel(II), and Copper(II) Complexes with 4-(4-Hydroxyphenyl)-1,2,4-Triazole. Russian Journal of Coordination Chemistry. 2012;38(5):353–362. DOI: 10.1134/S1070328412050065.
  26. Tarasevich BN. IK-spektry osnovnykh klassov organicheskikh soedinenii. Spravochnye materialy [IR spectra of the main classes of organic compounds. Reference materials]. Moscow: Moscow State University; 2012. 55 p. Russian.
  27. Kukushkin YuN. Khimiya koordinatsionnykh soedinenii [Chemistry of coordination compounds]. Moscow: Vysshaya shkola; 1985. 455 p. Russian.
  28. Degtyarik MM, Ivashkevich OA, Gaponik PN. Study of tetrazoles derivatives and their complex compounds by IR spectroscopy. Cviridovskie chteniya. Vypusk 3. Minsk: Belarusian State University; 2006. p. 169‒175. Russian.
  29. Garnovsky AD, Osipov OA, Kuznetsova LI, Bogdashev NN. Advances in coordination chemistry of azoles. Uspekhi khimii. 1973;42(2):177‒215. Russian.
  30. Anisimova NA. Identifikatsiya organicheskikh soedinenii [Identification of organic compounds]. Gorno-Altaysk: RIO of the Gorno-Altai State University; 2009. 118 p. Russian.
  31. Garnovsky AD, Vasilchenko IS. Rational design of coordination compounds of metals with azomethine ligands. Uspekhi khimii. 2002;71(11):1064‒1089. Russian. DOI: 10.1070/RC2002v071n11ABEH000759.
Published
2020-03-05
Keywords: 1,2,4-triazoles, coordination compounds, X-ray analysis, IR spectroscopy
How to Cite
Degtyarik, M. M., Bogatikov , A. N., Voitekhovich , S. V., Lyakhov , A. S., Ivashkevich , L. S., Grigoriev , Y. V., & Ivashkevich , O. A. (2020). Synthesis and structure of copper(II) complexes with 1-iso-propyl-1Н-1,2,4-triazole. Journal of the Belarusian State University. Chemistry, 1, 64-73. https://doi.org/10.33581/2520-257X-2020-1-64-73