Electrocatalysis of oxygen reduction reaction on gold nanoparticles modified titanium dioxide films with different morphology
Abstract
Dense and mesoporous titanium dioxide films have been obtained on titanium substrate by means of thermal oxidation, hydrolysis of polybutyltitanate, deposition of titanium dioxide sol, ultrasonic treatment and anodic oxidation and characterized by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. Electrochemical activity of titanium dioxide films, initial and modified by gold nanoparticles, in oxygen reduction reaction (ORR) in alkaline medium has been studied by cyclic voltammetry. It has been demonstrated that the efficiency of the dense and mesoporous titanium dioxide films in ORR is determined by their morphology, structure and pore ordering degree. Modification of titanium dioxide films by gold nanoparticles results in the decrease in overpotential of the ORR. It has been found that the electrodes consisted of highly ordered layers of titania nanotubes with deposited gold nanoparticles demonstrate sufficiently higher electrocatalytic activity toward the oxygen electroreduction in comparison with TiO2/Au systems based on dense films and mesoporous films with disordered pore structure. Features of electrochemical behavior of TiO2/Au (nanotubes/nanoparticles) system are explained by the peculiarities of electron transport to the electrode surface and structure of space charge layer in the mesoporous oxide film.
References
- Li D, Lv H, Kang Y, Markovic NM, Stamenkovic VR. Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells. Annual Review of Chemical and Biomolecular Engineering. 2016;7(1):509–532. DOI: 10.1146/annurev-chembioeng-080615-034526.
- Lipkowski J, Ross PN. Electrocatalysis. New York: Wiley-VCH; 1998.
- Kolbasov GY, Vorobets VS, Korduban AM, Shpak AP, Medvedskii MM, Kolbasova IG, et al. Electrodes based on nanodispersed titanium and tungsten oxides for a sensor of dissolved oxygen. Russian Journal of Applied Chemistry. 2006;79(4):605–610. Russian. DOI: 10.1134/S1070427206040173.
- Vakhnin DD, Pridorogina VE, Polyanskii LN, Kravchenko TA, Gorshkov VS. Redox sorption of oxygen dissolved in water on copper nanoparticles in an ion exchange matrix. Russian Journal of Physical Chemistry. 2018;92(1):155–160. Russian. DOI: 10.7868/S0044453718010302.
- Shao M, Chang Q, Dodelet JP, Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction. Chemical Reviews. 2016;116(6):3594–3657. DOI: 10.1021/acs.chemrev.5b00462.
- Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B. 2004;108(46):17886–17892. DOI: 10.1021/jp047349j.
- Tripachev OV, Tarasevich MR. Effect of size in oxygen electroreduction on gold over a wide range of pH. Russian Journal of Physical Chemistry. 2013;87(5):835–841. Russian. DOI: 10.7868/S0044453713050294.
- Štrbac S, Adžić RR. The influence of pH on reaction pathways for O2 reduction on the Au(100) face. Electrochimica Acta. 1996;41(18):2903−2908. DOI: 10.1016/0013-4686(96)00120-X.
- Solla-Gullón J, Vidal-Iglesias FJ, Feliu JM. Shape dependent electrocatalysis. Annual Reports on the Progress of Chemistry – Section C. 2011;107:263–297. DOI: 10.1039/c1pc90010b.
- Tang W, Lin H, Kleiman-Shwarsctein A, Stucky GD, McFarland EW. Size-dependent activity of gold nanoparticles for oxygen electroreduction in alkaline electrolyte. Journal of Physical Chemistry C. 2008;112(28):10515–10519. DOI: 10.1021/jp710929n.
- Sui S, Wang X, Zhou X, Su Y, Riffat S, Liu C-J. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. Journal of Materials Chemistry A. 2017;5:1808–1825. DOI: 10.1039/C6TA08580F.
- Trasatti S. Interfacial electrochemistry of conductive oxides for electrocatalysis. In: Wieckowski A, editor. Interfacial electrochemistry, theory, experiment and applications. New York: Marcel Dekker Inc.; 1999. p. 769−793.
- Curnic OJ, Mendes PM, Pollet BG. Enhanced durability of a Pt/C electrocatalyst derived from Nafion-stabilised colloidal platinum nanoparticles. Electrochemistry Communication. 2010;12(8):1017–1020. DOI: 10.1016/j.elecom.2010.05.013.
- Tang H, Su Y, Zhang B, Lee AF, Isaacs MA, Wilson K, et al. Classical strong metal-support interactions between gold nanoparticles and titanium dioxide. Science Advances. 2017;3(5):e170023-1−e170023-8. DOI: 10.1126/sciadv.1700231.
- Bagheri S, Mohd Hir ZA, Termeh Yousefi A, Bee Abdul Hamid S. Progress on mesoporous titanium dioxide: synthesis, modification and applications. Microporous and Mesoporous Materials. 2015;218:206–222. DOI: 10.1016/j.micromeso.2015.05.028.
- Ong W-J, Tan L-L, Chai S-P, Yong S-T, Mohamed AR. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale. 2014;6(4):1946–2008. DOI: 10.1039/c3nr04655a.
- Pei DN, Gong L, Zhang AY, Zhang X, Chen JJ, Mu Y, et al. Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction. Nature Communications. 2015;6:68696. DOI: 10.1038/ncomms9696.
- Mareva EA, Popova OV. Electrochemical modification of titanium in aqueous-organic electrolytes. Taganrog: Southern Federal University; 2016. Russian.
- Roy P, Berger S, Schmuki P. TiO2 Nanotubes: Synthesis and Applications. Angewandte Chemie – International Edition. 2011;50(13):2904–2939. DOI: 10.1002/anie.201001374.
- Maltanava H, Poznyak S, Ivanovskaya M, Scharnagl N, Starykevich M, Salak AN, et al. Effect of fluoride-mediated transformations on electrocatalytic performance of thermally treated TiO2 nanotubular layers. Journal of Fluorine Chemistry. 2019;221:34–41. DOI: 10.1016/j.jfluchem.2019.02.006.
- Maltanava H, Poznyak S, Starykevich M, Ivanovskaya M. Electrocatalytic activity of Au nanoparticles onto TiO2 nanotubular layers in oxygen electroreduction reaction: size and support effects. Electrochimica Acta. 2016;222:1013–1020. DOI: 10.1016/j.electacta.2016.11.070.
- Ovodok E, Maltanava H, Poznyak S, Ivanovskaya M, Kudlash A, Scharnagl N, et al. Synthesis and characterization of efficient TiO2 mesoporous photocatalysts. Materials Today: proceedings. 2017;5(9):11526–11533. DOI: 10.1016/j.matpr.2017.09.062.
- Poznyak SK, Sviridov VV, Kulak AI, Samtsov MP. Photoluminescence and electroluminescence at the TiO2-electrolyte interface. Journal of Electroanalytical Chemistry. 1992;340(1−2):73−97. DOI: 10.1016/0022-0728(92)80290-K.
- Felske A, Plieth WJ. Raman spectroscopy of titanium dioxide layers. Electrochimica Acta. 1989;34(1):75−77. DOI: 10.1016/0013-4686(89)80012-X.
- Shul’ga YM, Matyushenko DV, Kabachkov EN, Kolesnikova AM, Kurkin EN, Domashnev IA, et al. Correlation between the Eg(1) oscillation frequency and half-width of the (101) peak in the X-ray diffraction pattern of TiO2 anatase nanoparticles. Technical Physics. 2010;80(1):142–144. Russian. DOI: 10.13140/RG.2.1.5017.1049.
- Swamy V, Kuznetsov A, Dubrovinsky LS, Caruso RA, Shchukin DG, Muddle BC, Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2. Physical Review B – Condensed Matter and Materials Physics. 2005;71(2−3):184302. DOI: 10.1103/PhysRevB.71.184302.
- Mentus SV. Oxygen reduction on anodically formed titanium dioxide. Electrochimica Acta. 2004;50(1):27–32. DOI:10.1016/j.electacta.2004.07.009.
- Bonnefont A, Ryabova AS, Schott T, Kéranguéven G, Istomin SY, Antipov EV, et al. Challenges in the understanding oxygen reduction electrocatalysis on transition metal oxides. Current Opinion in Electrochemistry. 2019;14:23–31. DOI: 10.1016/j.coelec.2018.09.010.
- Freund T, Morrison SR. Mechanism of cathodic processes on the semiconductor zinc oxide. Surface Science. 1968;9(1):119–132. DOI: 10.1016/0039-6028(68)90167-2.
- Lynch RP, Ghicov A, Schmuki P. A photo-electrochemical investigation of self-organized TiO2 nanotubes. Journal of the Electrochemical Society. 2010;157(3):G76−G84. DOI: 10.1149/1.3276455.
- Zhu H, Zhao M, Zhou J, Li W, Wang H, Xu Z, et al. Surface states as electron transfer pathway enhanced charge separation in TiO2 nanotube water splitting photoanodes. Applied Catalysis B: Environmental. 2018;234:100–108. DOI: 10.1016/j.apcatb.2018.04.040.
- Riboni F, Nguyen NT, So S, Schmuki P. Aligned metal oxide nanotube arrays: key-aspects of anodic TiO2 nanotube formation and properties. Nanoscale Horizons. 2016;1:445–466. DOI: 10.1039/c6nh00054a.
- Regonini D, Chen G, Leach C, Clemens FJ. Comparison of photoelectrochemical properties of TiO2 nanotubes and sol-gel. Electrochimica Acta. 2016;213:31–36. DOI: 10.1016/j.electacta.2016.07.097.
Copyright (c) 2020 Journal of the Belarusian State University. Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who are published in this journal agree to the following:
- The authors retain copyright on the work and provide the journal with the right of first publication of the work on condition of license Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- The authors retain the right to enter into certain contractual agreements relating to the non-exclusive distribution of the published version of the work (e.g. post it on the institutional repository, publication in the book), with the reference to its original publication in this journal.
- The authors have the right to post their work on the Internet (e.g. on the institutional store or personal website) prior to and during the review process, conducted by the journal, as this may lead to a productive discussion and a large number of references to this work. (See The Effect of Open Access.)