Fine control over the structure and morphology of metal-matrix composites employing submicron oxide particles with the adjustable redox-activity

Abstract

It is shown that copolycondensation of mixed vanadic and molybdic acids under the solvothermal conditions yields substitutional solid solution V2O5 : MoO3 (isostructural to V2O5 xerogel) the redox activity of which exhibits increase with the MoO3 content. Thus obtained mixed oxide 0.5V2O5 : 0.5MoO3 with high redox activity, being codeposited with the galvanic nickel, ensure multicenter nucleation of metal phase, yields compact composite with the enhanced corrosion stability.

Author Biography

Tatyana V. Sviridova, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

doctor of science (chemistry); professor at the department of inorganic chemistry, faculty of chemistry

References

  1. Walsh FC, Ponce de Leon C. A review of the electrodeposition of metal-matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying coatings technology. Transactions of the IMF. 2014;92(2):83–98. DOI: 10.1179/0020296713Z.000000000161.
  2. Landolt D. Electrodeposition science and technology in the last quarter of the twentieth century. Journal of the Electrochemical Society. 2002;149(3):S9–S20. DOI: 10.1149/1.1469028.
  3. Musiani M. Electrodeposition of composites: an expanding subject in electrochemical materials science. Electrochimica Acta. 2000;45(20):3397–3402. DOI: 10.1016/S0013-4686(00)00438-2.
  4. Sviridova TV. Kompozicionnye materialy: metall-matrichnye kompozity [Composite materials: metal-matrix composites]. Мinsk: Belarusian State University; 2012. 272 p. Russian.
  5. Hovestad A, Janssen LJJ. Electrochemical codeposition of inert particles in a metallic matrix. Journal of Applied Electrochemistry. 1995;25(6):519–527. DOI: 10.1007/BF00573209.
  6. Low CTJ, Wills RGA, Walsh FC. Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surface and Coatings Technology. 2006;201(1–2):371–383. DOI: 10.1016/j.surfcoat.2005.11.123.
  7. Shawki S, Apdel HZ. Deposition of high wear resistance of Ni-composite coatings. Anti-Corrosion Methods and Materials. 1997;44(3):178–185. DOI: 10.1108/00035599710167142.
  8. Ye Z, Cheng HS, Chang NS. Wear characteristics of nickel/silicon carbide composite coating in lubricated reciprocating contacts. Tribology Transactions. 1996;39(3):527–536. DOI: 10.1080/10402009608983563.
  9. Chang Y-S, Lee J-Y. Wear resistant nickel composite coating from bright nickel baths with suspended very low concentration alumina. Materials Chemistry and Physics. 1988;20(4–5):309–321. DOI: 10.1016/0254-0584(88)90071-5.
  10. Garcia I, Conde A, Langelaan G, Fransaer J, Celis JP. Improved corrosion resistance through microstructural modifications induced by codepositing SiC-particles with electrolytic nickel. Corrosion Science. 2003;45(6):1173–1189. DOI: 10.1016/S0010-938X(02)00220-2.
  11. Szczygiel B, Kolodzej M. Composite Ni/Al2O3 coatings and their corrosion resistance. Electrochimica Acta. 2005;50:4188–4195. DOI: 10.1016/j.electacta.2005.01.040.
  12. Medeliene V, Leinartas K, Juzeliunas E. In situ corrosion of Ni codeposited with Al2O3 and SiC. Chemija. 1996;4:25–28.
  13. Medeliene V, Leinartas K. Corrosion of Ni electrodes modified by SiC, Al2O3 and B4C microparticles in chloride solutions. Chemija. 1999;10(1):22–27.
  14. Starovoitov VN, Tolypin ES, Volkov LV. [Study of the formation mechanism of galvanochemical coatings with inclusions of particles of the second phase]. Zhurnal prikladnoi khimii. 1990;63(6):1261–1265. Russian.
  15. Monev M, Dobrev T, Nikolova S, Stoyanchev R, Rashkov S. Inclusion pattern of non-conductive particles in electrodeposited nickel coatings. Surface and Coating Technology. 1988;34(4):493–499. DOI: 10.1016/0257-8972(88)90104-1.
  16. Vereecken PM, Shao I, Searson PC. Particle codeposition in nanocomposite films. Journal of the Electrochemical Society. 2000;147:2572–2575. DOI: 10.1149/1.1393570.
  17. Stojak LJ, Talbol JB. Investigation of electrocodeposition using a rotating cylinder electrode. Journal of the Electrochemical Society. 1999;146(12):4504–4513. DOI: 10.1149/1.1392665.
  18. Helle K, Walsh F. Electrodeposition of composite layers consisting of inert inclusions in a metal matrix. Transactions of the IMF. 1997;75(2):53–58. DOI: 10.1080/00202967.1997.11871143.
  19. Sviridova TV, Stepanova LI, Sviridov DV. Electrochemical synthesis of Ni-MoO3 composite films: redox-mediated mechanism of electrochemical growth of metal-matrix composite. Journal of Solid State Electrochemistry. 2012;16(12):3799–3803. DOI: 10.1007/s10008-012-1816-2.
  20. Sviridova TV, Logvinovich AS, Sviridov DV. Electrochemical growing of Ni-MoO3 nanocomposite coatings via redox mechanism. Surface and Coatings Technology. 2017;319:6–11. DOI: 10.1016/j.surfcoat.2017.03.041.
  21. Sviridova TV, Stepanova LI, Sviridov DV. Nano- and microcrystals of molybdenum trioxide and metal-matrix composites on their basi. In: Ortiz M, Herrera T, editors. Molybdenum: characteristics, production and application. New York: Nova Science; 2012. p. 147–179.
  22. Sviridova TV, Antonova AA, Kokorin AI, Degtyarev EN, Sviridov DV. Nanostructured vanadium-molybdenum mixed oxides prepared by the solvothermal method. Russian Journal of Physical Chemistry B. 2015;9(1):22–28. DOI: 10.1134/S199079311501011X.
  23. Lowenheim FA, Davis J. Modern electroplating. Journal of the Electrochemical Society. 1974;121(12):397C. DOI: 10.1149/1.2402361.
  24. Jolivet J-P, Henry M, Livage J. Metal oxide chemistry and synthesis: from solution to solid state. Chichester: Weinheim Wiley; 2000. 321 р.
  25. Vukasovich MS, Farr JPG. Molybdate in corrosion inhibition – а review. Polyhedron. 1986;5(1–2):551–559. DOI: 10.1016/S0277-5387(00)84963-3.
Published
2020-08-27
Keywords: mixed vanadium – molybdenum oxide, solvothermal synthesis, metal-matrix composite, corrosion stability
Supporting Agencies This work was supported by Belarusian Republican Foundation for Fundamental Research (grant No. Kh20R-073).
How to Cite
Sviridova, T. V. (2020). Fine control over the structure and morphology of metal-matrix composites employing submicron oxide particles with the adjustable redox-activity. Journal of the Belarusian State University. Chemistry, 2, 82-88. https://doi.org/10.33581/2520-257X-2020-2-82-88