Theoretical description of the ligand function for ionoselective electrodes reversible to metal anion complexes. 3. Modeling of the electrode response in ligand and foreign ions solutions using the multi-species approach model

  • Vladimir V. Egorov Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus; Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Andrei V. Siamionau Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus; Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Andrei D. Novakovskii Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus; Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Yauhen B. Akayeu Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus https://orcid.org/0000-0002-6377-1975

Abstract

A description for the ligand function of the tetrathiocyanatozincate selective electrode, has been proposed, using a multi-species approach model. This model takes into account simultaneous phase-boundary, diffusion-controlled, processes of ion exchange between tetrathiocyanatozincate, thyocyanate and foreign ions unable to form zinc complexes, as well as distribution of the neutral zinc complex between phases, partial decomposition of quaternary ammonium tetrathiocyanatozincate salt and stepwise complex formation processes in water phase. The model is based on solving the system of equations describing several interphase and intraphase equilibria, assuming that diffusion flows of all membrane and solution components at the phase boundary are stationary. It provides the adequate description of tetrathiocyanatozincate selective electrode in solutions of the ligand, foreign ions and mixed solutions of the above, and predicts the effect of zinc chloride concentration in the sample solution upon electrode function slopes, lower detection limits and selectivity coefficients.

Author Biographies

Vladimir V. Egorov, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus; Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

doctor of science (chemistry), full professor; professor at the department of analytical chemistry, faculty of chemistry, Belarusian State University , and chief researcher at the laboratory of physicochemical methods of investigation, Research Institute for Physical Chemical Problems, Belarusian State University

Andrei V. Siamionau, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus; Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

postgraduate student at the department of analytical chemistry, faculty of chemistry, Belarusian State University, and junior researcher at the laboratory of physico-chemical methods of investigation, Research Institute for Physical Chemical Problems, Belarusian State University

Andrei D. Novakovskii, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus; Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

senior lecturer at the department of analytical chemistry, faculty of chemistry, Belarusian State University, and junior researcher at the laboratory of physico-chemical methods of investigation, Research Institute for Physical Chemical Problems, Belarusian State University

Yauhen B. Akayeu, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (chemistry), docent; associate professor at the department of analytical chemistry, faculty of chemistry

References

  1. Sokalski T, Zwickl T, Bakker E, Pretsch E. Lowering the detection limit of solvent polymeric ion-selective electrodes. 1. Modeling the influence of steady-state ion fluxes. Analytical Chemistry. 1999;71(6):1204–1209. DOI: 10.1021/ac980944v.
  2. Pretsch E. The new wave of ion-selective electrodes. TrAC Trends in Analytical Chemistry. 2007;26(1):46–51. DOI: 10.1016/j.trac.2006.10.006.
  3. Radu A, Peper S, Bakker E, Diamond D. Guidelines for improving the lower detection limit of ion‐selective electrodes: a systematic approach. Electroanalysis. 2007;19(2–3):144–154. DOI: 10.1002/elan.200603741.
  4. Zdrachek E, Bakker E. Potentiometric sensing. Analytical Chemistry. 2019;91(1):2–26. DOI: 10.1021/acs.analchem.8b04681.
  5. Morf WE, Pretsch E, de Rooij NF. Computer simulation of ion-selective membrane electrodes and related systems by finite-difference procedures. Journal of Electroanalytical Chemistry. 2007;602(1):43–54. DOI: 10.1016/j.jelechem.2006.11.025.
  6. Morf WE, Pretsch E, de Rooij NF. Theory and computer simulation of the time-dependent selectivity behavior of polymeric membrane ion-selective electrodes. Journal of Electroanalytical Chemistry. 2008;614(1–2):15–23. DOI: 10.1016/j.jelechem.2007.10.027.
  7. Egorov VV, Zdrachek EA, Nazarov VA. Improved separate solution method for determination of low selectivity coefficients. Analytical Chemistry. 2014;86(8):3693–3696. DOI: 10.1021/ac500439m.
  8. Bakker E. Evaluation of Egorov’s improved separate solution method for determination of low selectivity coefficients by numerical simulation. Analytical Chemistry. 2014;86(16):8021–8024. DOI: 10.1021/ac502638s.
  9. Kisiel A, Michalska A, Maksymiuk K. Bilayer membranes for ion-selective electrodes. Journal of Electroanalytical Chemistry. 2016;766:128−134. DOI: 10.1016/j.jelechem.2016.01.040.
  10. Yuan D, Bakker E. Overcoming pitfalls in boundary elements calculations with computer simulations of ion selective membrane electrodes. Analytical Chemistry. 2017;89(15):7828–7831. DOI: 10.1021/acs.analchem.7b01777.
  11. Egorov VV, Novakovskii AD, Zdrachek EA. Modeling of the effect of diffusion processes on the response of ion-selective electrodes by the finite difference technique: comparison of theory with experiment and critical evaluation. Journal of Analytical Chemistry. 2017;72(7):793–802. DOI: 10.1134/S1061934817070048.
  12. Egorov VV, Novakovskii AD, Zdrachek EA. Interface equilibria-triggered time-dependent diffusion model of the boundary potential and its application for the numerical simulation of the ion-selective electrode response in real systems. Analytical Chemistry. 2018;90(2):1309–1316. DOI: 10.1021/acs.analchem.7b04134.
  13. Egorov VV, Novakovskii AD. Application of the interface equilibria-triggered dynamic diffusion model of the boundary potential for the numerical simulation of neutral carrier-based ion-selective electrodes response. Analytica Chimica Acta. 2018;1043:20–27. DOI: 10.1016/j.aca.2018.08.043.
  14. Egorov VV, Novakovskii AD. Overcoming of one more pitfall in boundary element calculations with computer simulations of ion-selective electrode response. ACS Omega. 2019;4(1):1617–1622. DOI: 10.1021/acsomega.8b02926.
  15. Egorov VV, Novakovskii AD. On the possibilities of potentiometric analysis in presence of small concentrations of highly interfering foreign ions: ways for reducing the interference. Journal of Electroanalytical Chemistry. 2019;847:113234. DOI: 10.1016/j.jelechem.2019.113234.
  16. Egorov VV, Novakovskii AD, Salih FA, Semenov AV, Akayeu YB. Description of the effects of non‐ion‐exchange extraction and intra‐membrane interactions on the ion‐selective electrodes response within the interface equilibria‐triggered model. Electroanalysis. 2020;32(4):674–682. DOI: 10.1002/elan.201900647.
  17. Egorov VV, Semenov AV, Novakovskii AD, Akayeu YB. Theoretical description of the ligand function for ionoselective electrodes reversible to metal anion complexes. 1. Lower detection limit and its determining factors. Journal of the Belarusian State University. Chemistry. 2020;2:17–28. Russian. DOI: 10.33581/2520-257X-2020-2-17-28.
  18. Egorov VV, Semenov AV, Novakovskii AD, Akayeu YB. Theoretical description of the ligand function for ionoselective electrodes reversible to metal anion complexes. 2. Selectivity to foreign ions. Journal of the Belarusian State University. Chemistry. 2020;2:29–42. Russian. DOI: 10.33581/2520-257X-2020-2-29-42.
  19. Umezawa Y, Bühlmann P, Umezawa K, Tohda K, Amemiya S. Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic cations (Technical report). Pure and Applied Chemistry. 2000;72(10):1851–2082. DOI: 10.1351/pac200072101851.
  20. Mikhelson KN, Lewenstam A, Didina SE. Contribution of the diffusion potential to the membrane potential and to the ion‐selective electrode response. Electroanalysis. 1999;11(10–11):793–798. DOI: 10.1002/(SICI)1521-4109(199907)11:10/11<793::AIDELAN793>3.0.CO;2-K.
  21. Mikhelson KN, Lewenstam A. Improvement of potentiometric selectivity of ion-exchanger based membranes doped with co-exchanger: origin of the effect. Sensors and Actuators B: Chemical. 1998;48(1–3):344–350. DOI: 10.1016/S0925-4005(98)00069-0.
  22. Mikhelson KN, Lewenstam A. Modeling of divalent/monovalent ion selectivity of ion-exchanger-based solvent polymeric membranes doped with coexchanger. Analytical Chemistry. 2000;72(20):4965–4972. DOI: 10.1021/ac991317o.
  23. Mikhelson KN, Smirnova AL. A new equation for the electrical potential of liquid and PVC membranes containing both neutral carriers and ion-exchangers. Sensors and Actuators B: Chemical. 1992;10(1):47–54. DOI: 10.1016/0925-4005(92)80010-U.
  24. Mikhelson KN. Ion-selective electrodes in PVC matrix. Sensors and Actuators B: Chemical. 1994;18(1–3):31–37. DOI: 10.1016/0925-4005(94)87051-9.
  25. Mikhelson KN. [Ion-selective membranes with two types of ion-exchange groups: modeling in the framework of the multi-species approach]. Vestnik Sankt-Peterburgskogo universiteta. Seriya 4. Fizika. Khimiya. 2003;1:53–65. Russian.
  26. Rakhman’ko EM, Matveichuk YuV, Kachanovich IV. Rodanidnye kompleksy metallov v ekstraktsii i ionometrii [Thiocyanate metal complexes in extraction and ionometry]. Minsk: Belarusian State University; 2017. 171 p. Russian.
  27. Neumann JF, Raxon JR, Cummisky CJ. Anion exchange of metal complexes–III[1] the zinc-thiocyanate system. Journal of Inorganic and Nuclear Chemistry. 1968;30(8):2243–2248. DOI: 10.1016/0022-1902(68)80223-4.
  28. Dean JA. Lange’s handbook of chemistry. New York: McGraw-Hill Professional Publishing; 1998. 1561 p.
  29. Zdrachek EA, Nazarov VA, Egorov VV. Method for estimating ion diffusion coefficients in membranes of ion-selective electrodes from potentiometric data. Vestnik BGU. Seriya 2. Khimiya. Biologiya. Geografiya. 2014;1:10–15. Russian.
Published
2021-04-12
Keywords: tetrathiocyanatozincate selective electrode, multi-species approach model, ligand function, lower detection limit, response slope, selectivity coefficients
Supporting Agencies This work was supported by the Ministry of Education of the Republic of Belarus (project No. 20190746).
How to Cite
Egorov, V. V., Siamionau, A. V., Novakovskii, A. D., & Akayeu, Y. B. (2021). Theoretical description of the ligand function for ionoselective electrodes reversible to metal anion complexes. 3. Modeling of the electrode response in ligand and foreign ions solutions using the multi-species approach model. Journal of the Belarusian State University. Chemistry, 1, 36-49. https://doi.org/10.33581/2520-257X-2021-1-36-49