Fluorescein dihexanoate as a profluorescent marker for monitoring of hydrolytic descruction of polylactide-based materials
Abstract
Polylactide (PLA) is one of the most promising biodegradable and biocompatible polymer materials. Estimation of hydrolytic destruction of PLA is of high importance for their applications both at planning and at real-time exploitation. This paper reports on synthesis and applicability of fluorescein-O-dihexanoate as a pro-fluorescent marker of hydrolytic destruction of two types of PLA-based materials. Fluorescence enhancement correlated with adequately more fast destruction of poly-D,L-lactide as well as less stability to alkaline hydrolysis. Thus, applicability of fluorescein-O-dihexanoate for fluorescence-based estimation of hydrolytic destruction of PLA-based materials is shown in quite real time mode.
References
- Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications. Macromolecular Rapid Communications. 2000;21(3):117–132. DOI: 10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X.
- Vichaibun V, Chulavatnatol MA. A new assay for the enzymatic degradation of polylactic acid. Science Asia. 2003;29:297–300. DOI: 10.2306/scienceasia1513-1874.2003.29.297.
- Alwattar A, Haddad A, Zhou Q, Nascimento T, Greenhalgh R, Medeiros E, et al. Synthesis and characterisation of fluorescent pyrene-end-capped polylactide fibres. Polymer International. 2018;68(3):360–368. DOI: 10.1002/pi.5712.
- Fukuzaki H, Yoshida M, Asano M, Kumakura M. Synthesis of copoly(D,L-lactic acid) with relatively low molecular weight and in vitro degradation. European Polymer Journal. 1989;25(10):1019–1026. DOI: 10.1016/0014-3057(89)90131-6.
- Richert A, Olewnik-Kruszkowska E. Enzymatic degradation of biostatic materials based on polylactide. Ecological Questions. 2018;29(2):91–97. DOI: 10.12775/EQ.2018.014.
- Patel RB, Carlson AN, Solorio L, Exner AA. Characterization of formulation parameters affecting low molecular weight drug release from in situ forming drug delivery systems. Journal of Biomedical Materials Research. Part A. 2010;94(2):476–484. DOI: 10.1002/jbm.a.32724.
- Emadian SM, Onay TT, Demirel B. Biodegradation of bioplastics in natural environments. Waste Management. 2017;59:526–536. DOI: 10.1016/j.wasman.2016.10.006.
- Yew GH, Mohd Yusof AM, Mohd Ishak ZA, Ishiaku US. Water adsorption and enzymatic degradation of poly(lactid)/rice starch composites. Polymer Degradation and Stability. 2005;90(3):488–500. DOI: 10.1016/j.polymdegradstab.2005.04.006.
- Tsuji H, Echizen Y, Nishimura Y. Enzymatic degradation of poly(L-lactid acid): effects of UV irradiation. Journal of Polymers and the Environment. 2006;14(3):239–248. DOI: 10.1007/s10924-006-0023-6.
- Peng H, Ling J, Liu J, Zhu N, Ni X, Shen Z. Controlled enzymatic degradation of poly(ε-caprolactone)-based copolymers in the presence of porcine pancreatic lipase. Polymer Degradation and Stability. 2010;95(4):643–650. DOI: 10.1016/j.polymdegradstab.2009.12.005.
- Li S, Liu L, Garreau H, Vert M. Lipase-catalyzed biodegradation of poly(ε-caprolactone) blended with various polylactide-based polymers. Biomacromolecules. 2003;4(2):372–377. DOI: 10.1021/bm025748j.
- Göpferich A. Mechanisms of polymer degradation and erosion. Biomaterials. 1996;17(2):103–114. DOI: 10.1016/0142-9612(96)85755-3.
- Göpferich A, Langer R. Modeling of polymer erosion. Macromolecules. 1993;26(16):4105–4112. DOI: 10.1021/ma00068a006.
- Freichels H, Danhier F, Préat V, Lecomte P, Jérôme C. Fluorescent labeling of degradable poly(lactide-co-glycolide) for cellular nanoparticles tracking in living cells. The International Journal of Artificial Organs. 2011;34(2):152–160. DOI: 10.5301/ijao.2011.6420.
- Tosi G, Rivasi F, Gandolfi F, Costantino L, Vandelli MA, Forni F. Conjugated poly(D,L-lactide-co-glycolide) for the preparation of in vivo detectable nanoparticles. Biomaterials. 2005;26(19):4189–4195. DOI: 10.1016/j.biomaterials.2004.10.025.
- Hu J, Guo J, Xie Z, Shan D, Gerhard E, Qian G, et al. Fluorescence imaging enabled poly(lactide-co-glycolide). Acta Biomaterialia. 2016;29:307–319. DOI: 10.1016/j.actbio.2015.10.010.
- Robin MP, O’Reilly RK. Strategies for preparing fluorescently labelled polymer nanoparticles. Polymer International. 2014;64(2):174–182. DOI: 10.1002/pi.4842.
- Woo J, Park H, Na Y, Kim S, Il Choi W, Lee JH, et al. Novel fluorescein polymer-based nanoparticles: facile and controllable one-pot synthesis, assembly, and immobilization of biomolecules for application in a highly sensitive biosensor. RSC Advances. 2020;10(5):2998–3004. DOI: 10.1039/C9RA09106H.
- Jarzębski M, Peplińska B, Florczak P, Gapiński J, Flak D, Mała P, et al. Fluorescein ether-ester dyes for labeling of fluorinated methacrylate nanoparticles. Journal of Photochemistry and Photobiology. Part A: Chemistry. 2019;382:111956. DOI: 10.1016/j.jphotochem.2019.111956.
- Demina TS, Grandfils Ch. Solid-state modified polylactides for processing of 3D materials with enhanced biocompatibility. Materials Today: Proceedings. 2019;12(1):93–96. DOI: 10.1016/J.MATPR.2019.03.072.
- Ma H, Zhang A, Zhang X, Zhao H, Cui Z, Fu P, et al. Novel platform for visualization monitoring of hydrolytic degradation of biodegradable polymers based on aggregation-induced emission (AIE) technique. Sensors and Actuators B: Chemical. 2020;304:12734. DOI: 10.1016/j.snb.2019.127342.
- Bardakova KN, Grebenik EA, Minaev NV, Churbanov SN, Moldagazyeva Z, Krupinov GE, et al. Tailoring the collagen film structural properties via direct laser crosslinking of star-shaped polylactide for robust scaffold formation. Materials Science and Engineering: C. 2020;107:110300. DOI: 10.1016/j.msec.2019.110300.
- Agnieszka R, Dąbrowska GB. Enzymatic degradation and biofilm formation during biodegradation of polylactide and polycaprolactone polymers in various environments. International Journal of Biological Macromolecules. 2021;176:226–232. DOI: 10.1016/j.ijbiomac.2021.01.202.
- Belov DA. Influence of the processes of radiation and hydrolytic destruction on the phase and relaxation transitions in poly-Land poly-D,L-lactides. Proceedings of the National Academy of Sciences of Belarus. Chemical Series. 2010;1:40–43. Russian.
- Krul LP, Belov DA, Butovskaya GV. Structure and physicochemical properties of biodegradable materials based on polylactides. Vestnik BGU. Seriya 2. Khimiya. Biologiya. Geografiya. 2011;3:5–11. Russian.
- Krul LP, Belov DA, Butovskja GV, Poloiko NA, Artushkevich AS. Poly-D,L-lactide destruction in vivo and in vitro. In: Kricheldorf HR, Schwarz G, Wutz C, editors. Biomaterials. 29 th Hamburger makromoleculares symposium; 2006 October 1–4; Hamburg, Germany. Hamburg: Universität Hamburg; 2006. p. 88.
Copyright (c) 2022 Journal of the Belarusian State University. Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who are published in this journal agree to the following:
- The authors retain copyright on the work and provide the journal with the right of first publication of the work on condition of license Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- The authors retain the right to enter into certain contractual agreements relating to the non-exclusive distribution of the published version of the work (e.g. post it on the institutional repository, publication in the book), with the reference to its original publication in this journal.
- The authors have the right to post their work on the Internet (e.g. on the institutional store or personal website) prior to and during the review process, conducted by the journal, as this may lead to a productive discussion and a large number of references to this work. (See The Effect of Open Access.)