Fluorescein dihexanoate as a profluorescent marker for monitoring of hydrolytic descruction of polylactide-based materials

  • Dmitry A. Belov Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus https://orcid.org/0000-0002-0304-256X
  • Yaroslav V. Faletrov Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus; Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Polina S. Yakovets Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Vladimir M. Shkumatov Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus; Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

Abstract

Polylactide (PLA) is one of the most promising biodegradable and biocompatible polymer materials. Estimation of hydrolytic destruction of PLA is of high importance for their applications both at planning and at real-time exploitation. This paper reports on synthesis and applicability of fluorescein-O-dihexanoate as a pro-fluorescent marker of hydrolytic destruction of two types of PLA-based materials. Fluorescence enhancement correlated with adequately more fast destruction of poly-D,L-lactide as well as less stability to alkaline hydrolysis. Thus, applicability of fluorescein-O-dihexanoate for fluorescence-based estimation of hydrolytic destruction of PLA-based materials is shown in quite real time mode.

Author Biographies

Dmitry A. Belov, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (chemistry); associate professor at the department of macromolecular compounds, faculty of chemistry

Yaroslav V. Faletrov, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus; Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

PhD (chemistry), docent; associate professor at the department of macromolecular compounds, faculty of chemistry, Belarusian State University, and leading researcher at the laboratory of biochemistry of drugs, Research Institute for Physical Chemical Problems, Belarusian State University

Polina S. Yakovets, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

student at the faculty of chemistry

Vladimir M. Shkumatov, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus; Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

corresponding member of the National Academy of Sciences of Belarus, doctor of science (biology), full professor; professor at the department of macromolecular compounds, faculty of chemistry, Belarusian State University, and chief researcher at the laboratory of biochemistry of drugs, Research Institute for Physical Chemical Problems, Belarusian State University

References

  1. Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications. Macromolecular Rapid Communications. 2000;21(3):117–132. DOI: 10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X.
  2. Vichaibun V, Chulavatnatol MA. A new assay for the enzymatic degradation of polylactic acid. Science Asia. 2003;29:297–300. DOI: 10.2306/scienceasia1513-1874.2003.29.297.
  3. Alwattar A, Haddad A, Zhou Q, Nascimento T, Greenhalgh R, Medeiros E, et al. Synthesis and characterisation of fluorescent pyrene-end-capped polylactide fibres. Polymer International. 2018;68(3):360–368. DOI: 10.1002/pi.5712.
  4. Fukuzaki H, Yoshida M, Asano M, Kumakura M. Synthesis of copoly(D,L-lactic acid) with relatively low molecular weight and in vitro degradation. European Polymer Journal. 1989;25(10):1019–1026. DOI: 10.1016/0014-3057(89)90131-6.
  5. Richert A, Olewnik-Kruszkowska E. Enzymatic degradation of biostatic materials based on polylactide. Ecological Questions. 2018;29(2):91–97. DOI: 10.12775/EQ.2018.014.
  6. Patel RB, Carlson AN, Solorio L, Exner AA. Characterization of formulation parameters affecting low molecular weight drug release from in situ forming drug delivery systems. Journal of Biomedical Materials Research. Part A. 2010;94(2):476–484. DOI: 10.1002/jbm.a.32724.
  7. Emadian SM, Onay TT, Demirel B. Biodegradation of bioplastics in natural environments. Waste Management. 2017;59:526–536. DOI: 10.1016/j.wasman.2016.10.006.
  8. Yew GH, Mohd Yusof AM, Mohd Ishak ZA, Ishiaku US. Water adsorption and enzymatic degradation of poly(lactid)/rice starch composites. Polymer Degradation and Stability. 2005;90(3):488–500. DOI: 10.1016/j.polymdegradstab.2005.04.006.
  9. Tsuji H, Echizen Y, Nishimura Y. Enzymatic degradation of poly(L-lactid acid): effects of UV irradiation. Journal of Polymers and the Environment. 2006;14(3):239–248. DOI: 10.1007/s10924-006-0023-6.
  10. Peng H, Ling J, Liu J, Zhu N, Ni X, Shen Z. Controlled enzymatic degradation of poly(ε-caprolactone)-based copolymers in the presence of porcine pancreatic lipase. Polymer Degradation and Stability. 2010;95(4):643–650. DOI: 10.1016/j.polymdegradstab.2009.12.005.
  11. Li S, Liu L, Garreau H, Vert M. Lipase-catalyzed biodegradation of poly(ε-caprolactone) blended with various polylactide-based polymers. Biomacromolecules. 2003;4(2):372–377. DOI: 10.1021/bm025748j.
  12. Göpferich A. Mechanisms of polymer degradation and erosion. Biomaterials. 1996;17(2):103–114. DOI: 10.1016/0142-9612(96)85755-3.
  13. Göpferich A, Langer R. Modeling of polymer erosion. Macromolecules. 1993;26(16):4105–4112. DOI: 10.1021/ma00068a006.
  14. Freichels H, Danhier F, Préat V, Lecomte P, Jérôme C. Fluorescent labeling of degradable poly(lactide-co-glycolide) for cellular nanoparticles tracking in living cells. The International Journal of Artificial Organs. 2011;34(2):152–160. DOI: 10.5301/ijao.2011.6420.
  15. Tosi G, Rivasi F, Gandolfi F, Costantino L, Vandelli MA, Forni F. Conjugated poly(D,L-lactide-co-glycolide) for the preparation of in vivo detectable nanoparticles. Biomaterials. 2005;26(19):4189–4195. DOI: 10.1016/j.biomaterials.2004.10.025.
  16. Hu J, Guo J, Xie Z, Shan D, Gerhard E, Qian G, et al. Fluorescence imaging enabled poly(lactide-co-glycolide). Acta Biomaterialia. 2016;29:307–319. DOI: 10.1016/j.actbio.2015.10.010.
  17. Robin MP, O’Reilly RK. Strategies for preparing fluorescently labelled polymer nanoparticles. Polymer International. 2014;64(2):174–182. DOI: 10.1002/pi.4842.
  18. Woo J, Park H, Na Y, Kim S, Il Choi W, Lee JH, et al. Novel fluorescein polymer-based nanoparticles: facile and controllable one-pot synthesis, assembly, and immobilization of biomolecules for application in a highly sensitive biosensor. RSC Advances. 2020;10(5):2998–3004. DOI: 10.1039/C9RA09106H.
  19. Jarzębski M, Peplińska B, Florczak P, Gapiński J, Flak D, Mała P, et al. Fluorescein ether-ester dyes for labeling of fluorinated methacrylate nanoparticles. Journal of Photochemistry and Photobiology. Part A: Chemistry. 2019;382:111956. DOI: 10.1016/j.jphotochem.2019.111956.
  20. Demina TS, Grandfils Ch. Solid-state modified polylactides for processing of 3D materials with enhanced biocompatibility. Materials Today: Proceedings. 2019;12(1):93–96. DOI: 10.1016/J.MATPR.2019.03.072.
  21. Ma H, Zhang A, Zhang X, Zhao H, Cui Z, Fu P, et al. Novel platform for visualization monitoring of hydrolytic degradation of biodegradable polymers based on aggregation-induced emission (AIE) technique. Sensors and Actuators B: Chemical. 2020;304:12734. DOI: 10.1016/j.snb.2019.127342.
  22. Bardakova KN, Grebenik EA, Minaev NV, Churbanov SN, Moldagazyeva Z, Krupinov GE, et al. Tailoring the collagen film structural properties via direct laser crosslinking of star-shaped polylactide for robust scaffold formation. Materials Science and Engineering: C. 2020;107:110300. DOI: 10.1016/j.msec.2019.110300.
  23. Agnieszka R, Dąbrowska GB. Enzymatic degradation and biofilm formation during biodegradation of polylactide and polycaprolactone polymers in various environments. International Journal of Biological Macromolecules. 2021;176:226–232. DOI: 10.1016/j.ijbiomac.2021.01.202.
  24. Belov DA. Influence of the processes of radiation and hydrolytic destruction on the phase and relaxation transitions in poly-Land poly-D,L-lactides. Proceedings of the National Academy of Sciences of Belarus. Chemical Series. 2010;1:40–43. Russian.
  25. Krul LP, Belov DA, Butovskaya GV. Structure and physicochemical properties of biodegradable materials based on polylactides. Vestnik BGU. Seriya 2. Khimiya. Biologiya. Geografiya. 2011;3:5–11. Russian.
  26. Krul LP, Belov DA, Butovskja GV, Poloiko NA, Artushkevich AS. Poly-D,L-lactide destruction in vivo and in vitro. In: Kricheldorf HR, Schwarz G, Wutz C, editors. Biomaterials. 29 th Hamburger makromoleculares symposium; 2006 October 1–4; Hamburg, Germany. Hamburg: Universität Hamburg; 2006. p. 88.
Published
2022-04-06
Keywords: poly-L-lactide, poly-D,L-lactide, fluorescein-O-dihexanoate, fluorescence, hydrolysis
Supporting Agencies The work was supported by governmental program of scientific researches «Chemical processes, reagents and technologies, bioregulators and bioorgchemistry» (No. 20210560).
How to Cite
Belov, D. A., Faletrov, Y. V., Yakovets, P. S., & Shkumatov, V. M. (2022). Fluorescein dihexanoate as a profluorescent marker for monitoring of hydrolytic descruction of polylactide-based materials. Journal of the Belarusian State University. Chemistry, 1, 53-60. https://doi.org/10.33581/2520-257X-2022-1-53-60