Aggregative stability of colloidal 3D and 2D silver nanoparticles, stabilised by 11-mercaptoundecanoic acid, in the presence of singly charged cations

  • Pavel O. Malakhovsky Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus https://orcid.org/0000-0002-3924-0103
  • Alexey V. Rashkevich Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus https://orcid.org/0000-0003-0400-9902
  • Egor A. Minakov Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus https://orcid.org/0000-0001-9163-4954
  • Mikhail Artemyev Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus https://orcid.org/0000-0002-6608-0002

Abstract

We studied the aggregative stability of colloidal silver quasi-spherical nanoparticles and two-dimensional nanoplates, stabilised by 11-mercaptoundecanoic acid, in the presence of phosphate buffers containing different singly charged cations (Li+ , Na+ , K+ , Cs+) and tris-HCl at pH 8.0 and concentration 0.02 mol/L which mimics the carbodiimide conjugation conditions of nanoparticles with biomolecules. Aggregation of silver nanoplates occurs in the presence of Na-phosphate buffer whereas at the same conditions the quasi-spherical nanoparticles retain colloidal stability. The difference in colloidal stability between 3D and 2D silver nanoparticles is due to the increase of the apparent acid dissociation constant on the nanoplates’ basal faces and the subsequent increase in specific bridging interactions nanoparticle – cation – nanoparticle which can be eliminated by introducing of non-ionic spacer (11-mercapto-1-undecanol) in the ligand layer. Silver nanoplates with mixed ligand layer have increased colloidal stability across the pH.

Author Biographies

Pavel O. Malakhovsky, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

junior researcher at the laboratory of nanochemistry

Alexey V. Rashkevich, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

student at the faculty of chemistry

Egor A. Minakov, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

graduate at the faculty of chemistry

Mikhail Artemyev, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

doctor of science (chemistry), full professor; head of the laboratory of nanochemistry

References

  1. Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, et al. Present and future of surface-enhanced Raman scattering. ACS Nano. 2020;14(1):28–117. DOI: 10.1021/acsnano.9b04224.
  2. Li J-F, Li C-Y, Aroca RF. Plasmon-enhanced fluorescence spectroscopy. Chemical Society Reviews. 2017;46(13):3962–3979. DOI: 10.1039/c7cs00169j.
  3. Yu Y, Williams JD, Willets KA. Quantifying photothermal heating at plasmonic nanoparticles by scanning electrochemical microscopy. Faraday Discussions. 2018;210:29–39. DOI: 10.1039/c8fd00057c.
  4. Mock JJ, Smith DR, Schultz S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Letters. 2003;3(4):485–491. DOI: 10.1021/nl0340475.
  5. Shrivastav AM, Cvelbar U, Abdulhalim I. A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Communications Biology. 2021;4:70. DOI: 10.1038/s42003-020-01615-8.
  6. Mauriz E. Recent progress in plasmonic biosensing schemes for virus detection. Sensors. 2020;20(17):4745. DOI: 10.3390/s20174745.
  7. Loiseau A, Asila V, Boitel-Aullen G, Lam M, Salmain M, Boujday S. Silver-based plasmonic nanoparticles for and their use in biosensing. Biosensors. 2019;9(2):78. DOI: 10.3390/bios9020078.
  8. Pallavicini P, Dacarro G, Taglietti A. Self-assembled monolayers of silver nanoparticles: from intrinsic to switchable inorganic antibacterial surfaces. European Journal of Inorganic Chemistry. 2018;2018(45):4846–4855. DOI: 10.1002/ejic.201800709.
  9. Sener G, Uzun L, Denizli A. Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water. ACS Applied Materials & Interfaces. 2014;6(21):18395–18400. DOI: 10.1021/am5071283.
  10. Bartczak D, Kanaras AG. Preparation of peptide-functionalized gold nanoparticles using one pot EDC/sulfo-NHS coupling. Langmuir. 2011;27(16):10119–10123. DOI: 10.1021/la2022177.
  11. Wickramathilaka MP, Tao BY. Characterization of covalent crosslinking strategies for synthesizing DNA-based bioconjugates. Journal of Biological Engineering. 2019;13(1):63. DOI: 10.1186/s13036-019-0191-2.
  12. Zhang Q, Li R-X, Chen X, He X-X, Han A-L, Fang G-Z, et al. Study of efficiency of coupling peptides with gold nanoparticles. Chinese Journal of Analytical Chemistry. 2017;45(5):662–667. DOI: 10.1016/S1872-2040(17)61013-2.
  13. Guzmán-Soto I, Omole M, Alarcon EI, McTiernan CD. Lipoic acid capped silver nanoparticles: a facile route to covalent protein capping and oxidative stability within biological systems. RSC Advances. 2020;10(54):32953–32958. DOI: 10.1039/d0ra07080g.
  14. Ehrl L, Jia Z, Wu H, Lattuada M, Soos M, Morbidelli M. Role of counterion association in colloidal stability. Langmuir. 2009;25(5):2696–2702. DOI: 10.1021/la803445y.
  15. Laaksonen T, Ahonen P, Johans C, Kontturi K. Stability and electrostatics of mercaptoundecanoic acid-capped gold nanoparticles with varying counterion size. ChemPhysChem. 2006;7(10):2143–2149. DOI: 10.1002/cphc.200600307.
  16. Oncsik T, Trefalt G, Borkovec M, Szilagyi I. Specific ion effects on particle aggregation induced by monovalent salts within the Hofmeister series. Langmuir. 2015;31(13):3799–3807. DOI: 10.1021/acs.langmuir.5b00225.
  17. Wang D, Tejerina B, Lagzi I, Kowalczyk B, Grzybowski BA. Bridging interactions and selective nanoparticle aggregation mediated by monovalent cations. ACS Nano. 2011;5(1):530–536. DOI: 10.1021/nn1025252.
  18. Zhang C-H, Zhu J, Li J-J, Zhao J-W. Small and sharp triangular silver nanoplates synthesized utilizing tiny triangular nuclei and their excellent SERS activity for selective detection of thiram residue in soil. ACS Applied Materials & Interfaces. 2017;9(20):17387–17398. DOI: 10.1021/acsami.7b04365.
  19. Zou X, Dong S. Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution. The Journal of Physical Chemistry B. 2006;110(43):21545–21550. DOI: 10.1021/jp063630h.
  20. Fabrikanos A, Athanassiou S, Lieser KH. Darstellung stabiler hydrosole von gold und silber durch reduktion mit äthylendiamintetraessigsäure. Zeitschrift für Naturforschung B. 1963;18(8):612–617. DOI: 10.1515/znb-1963-0805.
  21. Lundblad RL, Macdonald FM, editors. Handbook of biochemistry and molecular biology. 5th edition. Boca Raton: CRC Press; 2018. 1017 p.
  22. Pastoriza-Santos I, Liz-Marzán LM. Colloidal silver nanoplates. State of the art and future challenges. Journal of Materials Chemistry. 2008;18(15):1724–1737. DOI: 10.1039/b716538b.
  23. Malakhovsky P, Murausky D, Guzatov D, Gaponenko S, Artemyev M. Determination of pseudo-refractive index in self-assembled ligand layers from spectral shift of surface plasmon resonances in colloidal silver nanoplates. Zeitschrift für Physikalische Chemie. 2021;235(12):1831–1848. DOI: 10.1515/zpch-2020-1786.
  24. Sthoer A, Hladílková J, Lund M, Tyrode E. Molecular insight into carboxylic acid-alkali metal cations interactions: reversed affinities and ion-pair formation revealed by non-linear optics and simulations. Physical Chemistry Chemical Physics. 2019;21:11329–11344. DOI: 10.1039/c9cp00398c.
  25. Wang D, Nap RJ, Lagzi I, Kowalczyk B, Han S, Grzybowski BA, et al. How and why nanoparticle’s curvature regulates the apparent pKa of the coating ligands. Journal of the American Chemical Society. 2011;133(7):2192–2197. DOI: 10.1021/ja108154a.
  26. Kakiuchi T, Iida M, Gon N, Hobara D, Imabayashi S-I, Niki K. Miscibility of adsorbed 1-undecanethiol and 11-mercaptoundecanoic acid species in binary self-assembled monolayers on Au(111). Langmuir. 2001;17(5):1599–1603. DOI: 10.1021/la0014757.
  27. Kong B-K, Kim Y-S, Choi IS. pH-dependent stability of self-assembled monolayers on gold. Bulletin of the Korean Chemical Society. 2008;29(9):1843–1846. DOI: 10.5012/bkcs.2008.29.9.1843.
Published
2022-03-16
Keywords: colloidal silver nanoparticles, silver nanoplates, colloidal stability, ligand layer
Supporting Agencies This work was conducted under the project 2.1.04.01 of the state program of scientific research «Chemical processes, reagents and technologies, bioregulators and bioorganic chemistry». We thank World Federation of Scientists (CERN, Switzerland) for partial financial support. We are grateful to K. V. Skrotskaya for transmission electron microscopic investigation.
How to Cite
Malakhovsky, P. O., Rashkevich, A. V., Minakov, E. A., & Artemyev, M. (2022). Aggregative stability of colloidal 3D and 2D silver nanoparticles, stabilised by 11-mercaptoundecanoic acid, in the presence of singly charged cations. Journal of the Belarusian State University. Chemistry, 1, 3-17. https://doi.org/10.33581/2520-257X-2022-1-3-17