Synthesis of new multitope tetrazole-containing ligands

  • Evgeny Y. Grigoriev Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Ludmila S. Ivashkevich Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Alexander S. Lyakhov Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Inna M. Grigorieva Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Yuri V. Grigoriev Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus https://orcid.org/0000-0002-8153-835X
  • Oleg A. Ivashkevich Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

Abstract

Drawing the experience of 5-phenyl- and 5-pyridyltetrazoles, it was shown that classical nitration-reduction methods in combination with typical alkylation reactions of tetrazole derivatives can be used to obtain multitopic polynuclear tetrazole-containing ligands. Methods for the preparation of a number of previously undescribed polynuclear tetrazole derivatives, including those combining both tetrazole and pyridine rings in the molecule, have been developed. The composition and structure of the obtained compounds were determined by elemental analysis, single crystal X-ray diffraction, NMR and IR spectroscopy. For (5-(pyridin-2-yl)tetrazol-2-yl)(5-(pyridin-2-yl)tetrazol-1-yl)methane the crystalline structure was determined and it was found that this compound forms a 3D polymer framework due to non-classical hydrogen bonds. In its crystal structure there is a network of π – π stacking interactions between tetrazole rings of neighbouring molecules, as well as between pyridine rings.

Author Biographies

Evgeny Y. Grigoriev, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

junior researcher at the laboratory for chemistry of condensed systems

Ludmila S. Ivashkevich, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

PhD (chemistry), docent; head of the laboratory of physico-chemical investigations

Alexander S. Lyakhov, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

PhD (chemistry), docent; leading researcher at the laboratory for chemistry of condensed systems

Inna M. Grigorieva, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

researcher at the laboratory for chemistry of condensed systems

Yuri V. Grigoriev, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

PhD (chemistry), docent; head of the laboratory for chemistry of condensed systems

Oleg A. Ivashkevich, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

academician of the National Academy of Sciences of Belarus, doctor of science (chemistry), full professor; chief researcher at the laboratory for chemistry of condensed systems

References

  1. Gaponik PN, Voitekhovich SV, Ivashkevich OA. Metal derivatives of tetrazoles. Russian Chemical Reviews. 2006;75(6):507–539. DOI: 10.1070/RC2006v075n06ABEH003601.
  2. Zhao H, Qu Z-R, Ye H-Y, Xiong R-G. In situ hydrothermal synthesis of tetrazole coordination polymers with interesting physical properties. Chemical Society Reviews. 2008;37(1):84–100. DOI: 10.1039/b616738c.
  3. Aromi G, Barrios LA, Roubeau O, Gamez P. Triazoles and tetrazoles: prime ligands to generate remarkable coordination materials. Coordination Chemistry Reviews. 2011;255(5–6):485–546. DOI: 10.1016/j.ccr.2010.10.038.
  4. Popova EA, Trifonov RE, Ostrovskii VA. Advances in synthesis of tetrazoles coordinated to metal ions. Arkivoc. 2012(i):45–65. DOI: 10.3998/ark.5550190.0013.102.
  5. Massi M, Stagni S, Ogden MI. Lanthanoid tetrazole coordination complexes. Coordination Chemistry Reviews. 2018;375:164–172. DOI: 10.1016/j.ccr.2017.11.017.
  6. Tăbăcaru A, Pettinari C, Galli S. Coordination polymers and metal-organic frameworks built up with poly(tetrazolate) ligands. Coordination Chemistry Reviews. 2018;372:1–30. DOI: 10.1016/j.ccr.2018.05.024.
  7. Shvedenkov YuG, Virovets AV, Lavrenova LG. Magnetic properties and crystal structure of the dichlorobis(1-allyltetrazole)cobalt(II) complex. Russian Chemical Bulletin. 2003;52(6):1353–1357. DOI: 10.1023/A:1024823027050.
  8. Shvedenkov Y, Bushuev MB, Romanenko G, Lavrenova L, Ikorskii V, Gaponik P, et al. Magnetic anisotropy of new layered copper(II) bromide complexes of 1-substituted tetrazoles. European Journal of Inorganic Chemistry. 2005;9:1678–1682. DOI: 10.1002/ejic.200400505.
  9. Almeida Paz FA, Klinowski J, Vilela SMF, Tomé JPC, Cavaleiro JAS, Rocha J. Ligand design for functional metal – organic frameworks. Chemical Society Reviews. 2012;41(3):1088–1110. DOI: 10.1039/C1CS15055C.
  10. Coronado E, Giménez-Marqués M, Mínguez Espallargas G, Rey FI, Vitórica-Yrezábal IJ. Spin-crossover modification through selective CO2 sorption. Journal of the American Chemical Society. 2013;135(43):15986–15989. DOI: 10.1021/ja407135k.
  11. Xue DX, Cairns AJ, Belmabkhout Y, Wojtas L, Liu Y, Alkordi MH, et al. Tunable rare-earth fcu-MOFs: a platform for systematic enhancement of CO2 adsorption energetics and uptake. Journal of the American Chemical Society. 2013;135(20):7660–7667. DOI: 10.1021/ja401429x.
  12. Boldog I, Domasevitch KV, Baburin IA, Ott H, Gil-Hernandez B, Sanchiz J, et al. A rare alb-4,8-Cmce metal-coordination network based on tetrazolate and phosphonate functionalized 1,3,5,7-tetraphenyladamantane. CrystEngComm. 2013;15(6):1235–1243. DOI: 10.1039/C2CE26819A.
  13. Boldog I, Domasevitch KV, Sanchiz J, Mayer P, Janiak C. 1,3,5,7-Tetrakis(tetrazol-5-yl)-adamantane: the smallest tetrahedral tetrazole-functionalized ligand and its complexes formed by reaction with anhydrous M(II)Cl2 (M = Mn, Cu, Zn, Cd). Dalton Transactions. 2014;43(33):12590–12605. DOI: 10.1039/C4DT01022A.
  14. Boldog I, Domasevitch K, Maclaren JK, Heering C, Makhloufi G, Janiak C. A fluorite isoreticular series of porous framework complexes with tetrahedral ligands: new opportunities for azolate PCPs. CrystEngComm. 2014;16(2):148–151. DOI: 10.1039/C3CE42162G.
  15. Xing G, Zhang Y, Cao X. Bifunctional 3D porous Cu(I) metal – organic framework with gas sorption and luminescent properties. Journal of Molecular Structure. 2017;1146:793–796. DOI: 10.1016/j.molstruc.2017.06.058.
  16. Grigorieva IM, Serebryanskaya TV, Grigoriev YV, Lyakhov AS, Ivashkevich LS, Bogomyakov AS, et al. Transition metal chelate complexes with tetrazole derived Mannich base: metal dependent architecture and properties. Polyhedron. 2018;151:74–81. DOI: 10.1016/j.poly.2018.05.012.
  17. Ivanova AD, Grigoriev YV, Komarov YV, Sukhikh TS, Bogomyakov AS, Sheludyakova LA, et al. First examples of Co(II), Ni(II), and Cu(II) coordination compounds with 1-(pyrid-2-yl)-1H-tetrazole: synthesis, structure and properties. Polyhedron. 2020;189:114750. DOI: 10.1016/j.poly.2020.114750.
  18. Voitekhovich S, Grigoriev Y, Lyakhov A, Matulis VE, Ivashkevich LS, Bogomyakov AS, et al. 1-(1,2,4-Triazol-3-yl)-1H-tetrazoles and their complexation with copper(II) chloride. Polyhedron. 2020;176:114299. DOI: 10.1016/j.poly.2019.114299.
  19. Voitekhovich SV, Grigoriev YV, Lyakhov AS, Ivashkevich LS, Klose J, Kersting B, et al. Polymeric chain complexes of copper(II) chloride with 1,5-disubstituted tetrazoles: structure and magnetic properties. Polyhedron. 2021;194:114907. DOI: 10.1016/j.poly.2020.114907.
  20. Voitekhovich SV, Lyakhov AS, Shiman DI, Grigoriev YV, Ivashkevich LS, Klose J, et al. 1,3-Bis(1-methyl-1H-tetrazol-5-yl)propane and its coordination polymers with Cu2Cl4 and Cu3Cl6 units. Polyhedron. 2020;190:114793. DOI: 10.1016/j.poly.2020.114793.
  21. Voitekhovich SV, Grigoriev YV, Lyakhov AS, Matulis VE, Ivashkevich LS, Ivashkevich OA. 2-(1H-Tetrazol-1-yl)thiazole: complexation and copper-assisted tetrazole ring transformation. Polyhedron. 2019;171:423–432. DOI: 10.1016/j.poly.2019.07.030.
  22. Voitekhovich SV, Grigoriev YV, Lyakhov AS, Ivashkevich LS, Ivashkevich OA. The first organocopper tetrazole derivative: synthesis and characterization. Dalton Transactions. 2016;45(34):13406–13414. DOI: 10/1039/C6DT02306A.
  23. Serebryanskaya TV, Lyakhov AS, Ivashkevich LS, Grigoriev YV, Kritchenkov AS, Khrustalev VN, et al. Novel tetrazole PtII and PdII complexes with enhanced water solubility: synthesis, structural characterization and evaluation of antiproliferative activity. Zeitschrift für Kristallographie – Crystalline Materials. 2021;236(1–2):23–32. DOI: 10.1515/zkri-2020-0082.
  24. Burla MC, Caliro R, Carrozzini B, Cascarano GL, Cuocci C, Giacovazzo C, et al. Crystal structure determination and refinement via SIR2014. Journal of Applied Crystallography. 2015;48(part 1):306–309. DOI: 10.1107/S1600576715001132.
  25. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Sructural Chemistry. 2015;71(part 1):3–8. DOI: 10.1107/S2053229614024218.
  26. Spek AL. Structure validation in chemical crystallography. Acta Crystallographica Section D. 2009;D65(part 2):148–155. DOI: 10.1107/S090744490804362X.
  27. Finnegan WG, Henry RA, Lofquist R. An improved synthesis of 5-substituted tetrazoles. Journal of the American Chemical Society. 1958;80(15):3908–3911. DOI: 10.1021/ja01548a028.
  28. Lyakhov AS, Gaponik PN, Grigoriev YV, Ivashkevich LS. Bis(5-phenyltetrazol-2-yl)methane. Acta Crystallographica. 2002;58(7):o381–o383. DOI: 10.1107/S0108270102008466.
  29. Grigoriev YV, Voitekhovich SV, Karavai VP, Ivashkevich OA. Synthesis of tetrazole and its derivatives by heterocyclization reaction involving primary amines, orthoesters, and azides. Chemistry of Heterocyclic Compounds. 2017;53(6–7):670–681. DOI: 10.1007/s10593-017-2108-7.
  30. Ostrovskii VA, Koldobskii GI, Trifonov RE. 6.07 – Tetrazoles. Comprehensive Heterocyclic Chemistry III. 2008;6:257–423.
Published
2022-08-23
Keywords: 5-substituted tetrazoles, functionalisation, polynuclear derivatives, synthesis, single crystal X-ray diffraction, NMR spectroscopy, IR spectroscopy
Supporting Agencies The research was supported by the Ministry of Education of the Republic of Belarus (assignment 2.1.01.01 of the state program of scientific research «Chemical processes, reagents and technologies, bioregulators and bioorgchemistry»).
How to Cite
Grigoriev, E. Y., Ivashkevich, L. S., Lyakhov, A. S., Grigorieva, I. M., Grigoriev, Y. V., & Ivashkevich, O. A. (2022). Synthesis of new multitope tetrazole-containing ligands. Journal of the Belarusian State University. Chemistry, 2, 19-29. https://doi.org/10.33581/2520-257X-2022-2-19-29