Bi5Te3 superlattices as a cathode material for aqueous zinc-ion battery

  • Aliaksei S. Bakavets Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Genady A. Ragoisha Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus
  • Yauhen M. Aniskevich Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Eugene A. Streltsov Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

Abstract

A prototype of the aqueous zinc-ion battery which uses in the discharge stage the underpotential deposition with charge transfer of Zn2+ ions to Zn adlayer on electroactive material has been developed. The cathode material was (Bi2)m(Bi2Te3)n superlattice with the composition corresponding to Bi5Te3. The charge transfer in the cathode during battery charging and discharging is characterised by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge and discharge curves recording. The presence of bismuth nanolayers in the superlattice ensures efficient charge transfer in the cathode material, while bismuth telluride layers accept Zn2+ ions with the formation of adatomic zinc layers, the latter are oxidised anodically during battery charging.

Author Biographies

Aliaksei S. Bakavets, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

postgraduate student at the department of electrochemistry, faculty of chemistry

Genady A. Ragoisha, Research Institute for Physical Chemical Problems, Belarusian State University, 14 Lieninhradskaja Street, Minsk 220006, Belarus

PhD (chemistry), docent; leading researcher at the laboratory of thin films chemistry

Yauhen M. Aniskevich, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

senior researcher at the department of electrochemistry, faculty of chemistry

Eugene A. Streltsov, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

doctor of science (chemistry), full professor; head of the department of electrochemistry, faculty of chemistry

References

  1. Fang G, Zhou J, Pan A, Liang S. Recent advances in aqueous zinc-ion batteries. ACS Energy Letters. 2018;3(10):2480–2501. DOI: 10.1021/acsenergylett.8b01426.
  2. Tang B, Shan L, Liang S, Zhou J. Issues and opportunities facing aqueous zinc-ion batteries. Energy and Environmental Science. 2019;12:3288–3304. DOI: 10.1039/C9EE02526J.
  3. Zhang M, Liang R, Or T, Deng YP, Yu A, Chen Z. Recent progress on high‐performance cathode materials for zinc‐ion batteries. Small Structures. 2021;2(2):2000064. DOI: 10.1002/sstr.202000064.
  4. Park JS, Jo JH, Aniskevich Y, Bakavets A, Ragoisha G, Streltsov E, et al. Open-structured vanadium dioxide as an intercalation host for Zn ions: investigation by first-principles calculation and experiments. Chemistry of Materials. 2018;30(19):6777–6787. DOI: 10.1021/acs.chemmater.8b02679.
  5. Zampardi G, La Mantia F. Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nature Communications. 2022;13:687. DOI: 10.1038/s41467-022-28381-x.
  6. Shin J, Lee J, Park Y, Choi JW. Aqueous zinc ion batteries: focus on zinc metal anodes. Chemical Science. 2020;11(8):2028–2044. DOI: 10.1039/D0SC00022A.
  7. Siamionau U, Aniskevich Y, Mazanik A, Kokits O, Ragoisha G, Jo JH, et al. Rechargeable zinc-ion batteries with manganese dioxide cathode: how critical is choice of manganese dioxide polymorphs in aqueous solutions? Journal of Power Sources. 2022;523:231023. DOI: 10.1016/j.jpowsour.2022.231023.
  8. Alfaruqi MH, Mathew V, Song J, Kim S, Islam S, Pham DT, et al. Electrochemical zinc intercalation in lithium vanadium oxide: a high-capacity zinc-ion battery cathode. Chemistry of Materials. 2017;29(4):1684−1694. DOI: 10.1021/acs.chemmater.6b05092.
  9. Jo JH, Aniskevich Y, Kim J, Choi JU, Kim HJ, Jung YH, et al. New insight on open-structured sodium vanadium oxide as high-capacity and long life cathode for Zn-ion storage: structure, electrochemistry, and first-principles calculation. Advanced Energy Materials. 2020;10(40):2001595. DOI: 10.1002/aenm.202001595.
  10. Cheng Y, Luo L, Zhong L, Chen J, Li B, Wang W, et al. Highly reversible zinc-ion intercalation into chevrel phase Mo6S8 nanocubes and applications for advanced zinc-ion batteries. ACS Applied Materials and Interfaces. 2016;8(22):13673–13677. DOI: 10.1021/acsami.6b03197.
  11. Li H, Yang Q, Mo F, Liang G, Liu Z, Tang Z, et al. MoS2 nanosheets with expanded interlayer spacing for rechargeable aqueous Zn-ion batteries. Energy Storage Materials. 2019;19:94–101. DOI: 10.1016/j.ensm.2018.10.005.
  12. Xiong T, Wang Y, Yin B, Shi W, Lee WSV, Xue J. Bi2S3 for aqueous Zn ion battery with enhanced cycle stability. Nano-Micro Letters. 2020;12:8. DOI: 10.1007/s40820-019-0352-3.
  13. Wu Z, Lu C, Wang Y, Zhang L, Jiang L, Tian W, et al. Ultrathin VSe2 nanosheets with fast ion diffusion and robust structural stability for rechargeable zinc-ion battery cathode. Nano Micro Small. 2020;16(35):2000698. DOI: 10.1002/smll.202000698.
  14. Peng L, Ren X, Liang Z, Sun Y, Zhao Y, Zhang J, et al. Reversible proton co-intercalation boosting zinc-ion adsorption and migration abilities in bismuth selenide nanoplates for advanced aqueous batteries. Energy Storage Materials. 2021;42:34–41. DOI: 10.1016/j.ensm.2021.07.015.
  15. Wang Q, Wang S, Wei NG, Wuet R, Zeng W, Wen L, et al. Aqueous zinc-ion batteries based on a 2D layered Bi2Te3 cathode. Chemical Engineering Journal. 2022;450(part 2):138132. DOI: 10.1016/j.cej.2022.138132.
  16. Ko JK, Jo JH, Kim HJ, Park JS, Yashiro H, Voronina N, et al. Bismuth telluride anode boosting highly reversible electrochemical activity for potassium storage. Energy Storage Materials. 2021;43:411–421. DOI: 10.1016/j.ensm.2021.09.028.
  17. Bakavets A, Aniskevich Y, Yakimenko O, Jo JH, Vernickaite E, Tsyntsaru N, et al. Pulse electrodeposited bismuth-tellurium superlattices with controllable bismuth content. Journal of Power Sources. 2020;450:227605. DOI: 10.1016/j.jpowsour.2019.227605.
  18. Bakavets A, Aniskevich Y, Ragoisha G, Tsyntsaru N, Cesiulis H, Streltsov E. The optimized electrochemical deposition of bismuth – bismuth telluride layered crystal structures. IOP Conference Series: Materials Science and Engineering. 2021;1140:012016. DOI: 10.1088/1757-899X/1140/1/012016.
  19. Bakavets A, Aniskevich Y, Ragoisha G, Mazanik A, Tsyntsaru N, Cesiulis H, et al. Electrochemistry of bismuth interlayers in (Bi2)m(Bi2Te3)n superlattice. Journal of Solid State Electrochemisry. 2021;25(12):2807–2819. DOI: 10.1007/s10008-021-05068-9.
  20. Bakavets AS, Aniskevich YM, Ragoisha GA, Tsyntsaru N, Cesiulis H, Streltsov EA. Electrochemistry of (Bi2)m(Bi2Te3)n materials with superlattice structure. Sviridovskie chteniya. 2021;17:33–46. Russian.
  21. Zhao XB, Ji XH, Zhang YH, Zhu TJ, Tu JP, Zhang XB. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Applied Physics Letters. 2005;86(6):062111. DOI: 10.1063/1.1863440.
  22. Petrícek V, Dušek M, Palatinus L. Crystallographic computing system JANA2006: general features. Zeitschrift für Kristallographie – Crystalline Materials. 2014;229(5):345–352. DOI: 10.1515/zkri-2014-1737.
  23. Chulkin PV, Aniskevich YM, Streltsov EA, Ragoisha GA. Underpotential shift in electrodeposition of metal adlayer on tellurium and the free energy of metal telluride formation. Journal of Solid State Electrochemistry. 2015;19(9):2511–2516. DOI: 10.1007/s10008-015-2831-x.
  24. Ragoisha GA, Aniskevich YM, Bakavets AS, Streltsov EA. Electrochemistry of metal adlayers on metal chalcogenides. Journal of Solid State Electrochemistry. 2020;24(11–12):2585–2594. DOI: 10.1007/s10008-020-04681-4.
  25. Bakavets AS, Aniskevich YM, Ragoisha GA, Streltsov EA. Underpotential deposition of lead onto Bi2Te3/Te heterostructures. Electrochemistry Communications. 2018;94:23–26. DOI: 10.1016/j.elecom.2018.07.018.
  26. Chen Z, Yang Q, Mo F, Li N, Liang G, Li X, et al. Aqueous zinc – tellurium batteries with ultraflat discharge plateau and high volumetric capacity. Advanced Materials. 2020;32(42):2001469. DOI: 10.1002/adma.202001469.
Published
2023-08-21
Keywords: bismuth telluride, bismuth, superlattice, zinc, battery, underpotential deposition
Supporting Agencies This work was supported financially by the programme of state scientific research «Chemical processes, reagents and technologies, bioregulators and bioorganic chemistry» for 2021–2025 (research works 20210562 and 20211465).
How to Cite
Bakavets, A. S., Ragoisha, G. A., Aniskevich, Y. M., & Streltsov, E. A. (2023). Bi5Te3 superlattices as a cathode material for aqueous zinc-ion battery. Journal of the Belarusian State University. Chemistry, 1, 28-36. https://doi.org/10.33581/2520-257X-2023-1-28-36