Advancements in green chemistry: sustainable synthesis and processes

  • Humphrey Sam Samuel Federal University Wukari, RQVG + F52 Katsinala Road, Wukari 670102, Taraba State, Nigeria
  • Emmanuel Edet Etim Federal University Wukari, RQVG + F52 Katsinala Road, Wukari 670102, Taraba State, Nigeria
  • Ugo Nweke-Maraizu Rivers State University, Nkpolu-Oroworukwo, P. M. B. 5080, Port Harcourt, Rivers State, Nigeria
  • Shedrach Yakubu Federal University of São Paulo, 1500 Rua Sena Madureira, São Paulo SP 04021-001, Brazil

Abstract

An emerging area of chemistry called «green chemistry» is revolutionising how environmental and sustainability issues related to chemical synthesis and processes are handled. A key tactic for improving sustainability in the chemical sector is green chemistry. Recent developments in green chemistry have concentrated on environmentally friendly synthesis and processes, such as the effective and clean transformation of renewable raw materials, the development of novel reactions and techniques, the use of eco-friendly solvents and alternative energy sources, process intensification, and cutting-edge environmental technologies. These developments are promoting sustainability in the chemical sector and lowering the environmental effect of chemical operations.

Author Biographies

Humphrey Sam Samuel, Federal University Wukari, RQVG + F52 Katsinala Road, Wukari 670102, Taraba State, Nigeria

research assistant at the department of chemical sciences, faculty of pure and applied sciences, and researcher at the computational astrochemistry and biosimulation research group

Emmanuel Edet Etim, Federal University Wukari, RQVG + F52 Katsinala Road, Wukari 670102, Taraba State, Nigeria

PhD (chemistry); associate professor at the department of chemical sciences, faculty of pure and applied sciences, and researcher at the computational astrochemistry and biosimulation research group

Ugo Nweke-Maraizu, Rivers State University, Nkpolu-Oroworukwo, P. M. B. 5080, Port Harcourt, Rivers State, Nigeria

PhD (chemistry); lecturer at the department of chemistry

Shedrach Yakubu, Federal University of São Paulo, 1500 Rua Sena Madureira, São Paulo SP 04021-001, Brazil

postgraduate student at the department of science and technology

References

  1. Anastas PT. Introduction: green chemistry. Chemical Reviews. 2007;107(6):2167–2168. DOI: 10.1021/cr0783784.
  2. Anastas PT, Warner JC. Green chemistry: theory and practice. New York: Oxford University Press; 1998. 135 p.
  3. Anastas P, Eghbali N. Green chemistry: principles and practice. Chemical Society Reviews. 2010;39(1):301–312. DOI: 10.1039/ B918763B.
  4. Zimmerman JB, Anastas PT, Erythropel HC, Leitner W. Designing for a green chemistry future. Science. 2020;367(6476):397–400. DOI: 10.1126/science.aay3060.
  5. Erythropel HC, Zimmerman JB, de Winter TM, Petitjean L, Melnikov F, Lam CH, et al. The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chemistry. 2018;20(9):1929–1961. DOI: 10.1039/C8GC00482J.
  6. Andrew C, Etim EE, Ushie OA, Khanal GP. Vibrational-rotational spectra of normal acetylene and doubly deuterated acetylene: experimental and computational studies. Chemical Science Transactions. 2018;7(1):77–82. DOI: 10.7598/cst2018.1432.
  7. Liu J, Mooney H, Hull V, Davis SJ, Gaskell J, Hertel T, et al. Systems integration for global sustainability. Science. 2015;347(6225):1258832. DOI: 10.1126/science.1258832.
  8. Schwager P, Decker N, Kaltenegger I. Exploring green chemistry, sustainable chemistry and innovative business models such as chemical leasing in the context of international policy discussions. Current Opinion in Green and Sustainable Chemistry. 2016;1:18–21. DOI: 10.1016/j.cogsc.2016.07.005.
  9. Etim EE, Andrew C, Lawal U, Udegbunam I, Ukpong EG. Protonation of carbonyl sulfide: ab initio study. Journal of Applied Sciences. 2020;20(1):26–34. DOI: 10.3923/jas.2020.26.34.
  10. Rastogi T, Leder C, Kümmerer K. A sustainable chemistry solution to the presence of pharmaceuticals and chemicals in the aquatic environment – the example of re-designing β-blocker Atenolol. RSC Advances. 2015;5(1):27–32. DOI: 10.1039/C4RA10294K.
  11. Li C-J, Anastas PT. Green chemistry: present and future. Chemical Society Reviews. 2012;41(4):1413–1414. DOI: 10.1039/ C1CS90064A.
  12. Kalidindi SB, Jagirdar BR. Nanocatalysis and prospects of green chemistry. ChemSusChem. 2012;5(1):65–75. DOI: 10.1002/ cssc.201100377.
  13. Hjeresen DL, Boese JM, Schutt DL. Green chemistry and education. Journal of Chemical Education. 2000;77(12):1543. DOI: 10.1021/ed077p1543.
  14. Anastas PT, Kirchhoff MM. Origins, current status, and future challenges of green chemistry. Accounts of Chemical Research. 2002;35(9):686–694. DOI: 10.1021/ar010065m.
  15. Ekpan FM, Ori MO, Samuel HS, Egwuatu OP. Emerging technologies for eco-friendly production of bioethanol from lignocellulosic waste materials. Eurasian Journal of Science and Technology. 2024;4(3):179–194. DOI: 10.48309/ejst.2024.429106.1119.
  16. Perlatti B, Forim MR, Zuin VG. Green chemistry, sustainable agriculture andprocessing systems: a Brazilian overview. Chemical and Biological Technologies in Agriculture. 2014;1(5):1–9. DOI: 10.1186/s40538-014-0005-1.
  17. Clark J. The 12 misunderstandings of green chemistry. Environmental Science and Engineering Magazine. 2012;May – June:6–8.
  18. Valavanidis A. Green chemistry and new technological developments new avenues for the green economy and sustainable future of science and technology [Internet]. 2016 [cited 2023 December 10]. Available from: https://www.researchgate.net/publication/3052072844.
  19. Ubuoh EA. Green chemistry: a panacea for environmental sustainability agriculture in global perspective. Global Journal of Pure and Applied Chemistry Research. 2016;4(1):21–29.
  20. O’Brien KP, Franjevic S, Jones J. Green chemistry and sustainable agriculture: the role of biopesticides. Advancing Green Chemistry. 2009;2009:1.
  21. Soni GD. Advantages of green technology. International Journal of Research – Granthaalayah. 2015;3(9SE):1–5. DOI: 10.29121/ granthaalayah.v3.i9SE.2015.3121.
  22. Marco BA, Rechelo BS, Tótoli EG, Kogawa AC, Salgado HRN. Evolution of green chemistry and its multidimensional impacts: a review. Saudi Pharmaceutical Journal. 2019;27(1):1–8. DOI: 10.1016/j.jsps.2018.07.011.
  23. Thovhogi N, Park E, Manikandan E, Maaza M, Gurib-Fakim A. Physical properties of CdO nanoparticles synthesized by green chemistry via Hibiscus sabdariffa flower extract. Journal of Alloys and Compounds. 2016;655:314–320. DOI: 10.1016/j.jallcom.2015.09.063.
  24. Sharma RK, Bandichhor R, editors. Hazardous reagent substitution: a pharmaceutical perspective. [S. l.]: Royal Society of Chemistry; 2018. 194 p.
  25. Compagno N, Profeta R, Scarso A. Recent advances in the synthesis of active pharmaceutical and agrochemical ingredients in micellar media. Current Opinion in Green and Sustainable Chemistry. 2022;39:100729. DOI: 10.1016/j.cogsc.2022.100729.
  26. Samuel HS, Nweke-Maraizu U, Etim EE. Supercritical fluids: properties, formation and applications. Journal of Engineering in Industrial Research. 2023;4(3):176–188. DOI: 10.48309/jeires.2023.3.5.
  27. Polshettiwar V, Varma RS. Green chemistry by nano-catalysis. Green Chemistry. 2010;12(5):743–754.
  28. Samuel HS, Etim EE, Shinggu JP, Bako B. Machine learning of rotational spectra analysis in interstellar medium. Communication in Physical Sciences. 2023;10(1):172–203.
  29. Centi G, Perathoner S. Catalysis and sustainable (green) chemistry. Catalysis Today. 2003;77(4):287–297. DOI: 10.1016/S0920- 5861(02)00374-7.
  30. Khan SA, Shahid S, Hanif S, Almoallim HS, Alharbi SA, Sellami H. Green synthesis of chromium oxide nanoparticles for antibacterial, antioxidant anticancer, and biocompatibility activities. International Journal of Molecular Sciences. 2021;22:502. DOI: 10.3390/ijms22020502.
  31. Etim EE, Lawal U, Andrew C, Udegbunam IS. Computational studies on C3H4N2 isomers. International Journal of Advanced Research in Chemical Science (IJARCS). 2018;5(1):29–40. DOI: 10.20431/2349-0403.0501005.
  32. Qamar H, Rehman S, Chauhan DK, Tiwari AK, Upmanyu V. Green synthesis, characterization and antimicrobial activity of copper oxide nanomaterial derived from Momordica charantia. International Journal of Nanomedicine. 2020;15:2541–2553. DOI: 10.2147/IJN. S240232.
  33. Yan Liu, Lin Zuo, Qiyan Lv, Bing Yu. Recent advances in photochemical transformations using water as an oxygen source. Current Opinion in Green and Sustainable Chemistry. 2023;40:100759. DOI: 10.1016/j.cogsc.2023.100759.
  34. Debecker DP, Hii KK, Moores A, Rossi LM, Sels B, Allen DT, et al. Shaping effective practices for incorporating sustainability assessment in manuscripts submitted to ACS Sustainable Chemistry & Engineering: catalysis and catalytic processes. ACS Sustainable Chemistry and Engineering. 2021;9(14):4936–4940. DOI: 10.1021/acssuschemeng.1c02070.
  35. Lozano P, García-Verdugo E. From green to circular chemistry paved by biocatalysis. Green Chemistry. 2023;25(18):7041–7057. DOI: 10.1039/D3GC01878D.
  36. Zhang B, Jiang Y, Balasubramanian R. Synthesis of biowaste-derived carbon foam for CO2 capture. Resources, Conservation and Recycling. 2022;185:106453. DOI: 10.1016/j.resconrec.2022.106453.
  37. Zuin VG, Kümmerer K. Chemistry and materials science for a sustainable circular polymeric economy. Nature Reviews Materials. 2022;7:76–78. DOI: 10.1038/s41578-022-00415-2.
  38. Keçili R, Yilmaz E, Ersöz A, Say R. Imprinted materials: from green chemistry to sustainable engineering. In: Ersöz A, Şenel S, editors. Sustainable nanoscale engineering: from materials design to chemical processing. [S. l.]: Elsevier; 2020. p. 317–350. DOI: 10.1016/B978-0-12-814681-1.00012-6.
  39. Whiteker GT. Applications of the 12 principles of green chemistry in the crop protection industry. Organic Process Research and Development. 2019;23(10):2109–2121. DOI: 10.1021/acs.oprd.9b00305.
  40. Ganesh KN, Zhang D, Miller SJ, Rossen K, Chirik PJ, Kozlowski MC, et al. Green chemistry: a framework for a sustainable future. Environmental Science and Technology. 2021;55(13):8459–8463. DOI: 10.1021/acs.est.1c03762.
  41. Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J. Green chemistry in the synthesis of pharmaceuticals. Chemical Reviews. 2022;122(3):3637–3710. DOI: 10.1021/acs.chemrev.1c00631.
  42. Samuel HS, Etim EE, Oladimeji EO, Shinggu JP, Bako B. Machine learning in characterizing dipole-dipole interactions. FUW Trends in Science and Technology Journal. 2023;8(3):70–82.
  43. Ratti R. Industrial applications of green chemistry: status, challenges and prospects. SN Applied Sciences. 2020;2:263. DOI: 10.1007/s42452-020-2019-6.
  44. Giraud RJ, Williams PA, Sehgal A, Ponnusamy E, Phillips AK, Manley JB. Implementing green chemistry in chemical manufacturing: a survey report. ACS Sustainable Chemistry and Engineering. 2014;2(10):2237–2242. DOI: 10.1021/sc500427d.
  45. Zeng X, Wang F, Sun X, Li J. Recycling indium from scraped glass of liquid crystal display: process optimizing and mechanism exploring. ACS Sustainable Chemistry and Engineering. 2015;3(7):1306–1312. DOI: 10.1021/acssuschemeng.5b00020.
  46. Chinna Rajesh U, Satya Pavan V, Rawat DS. Hydromagnesite rectangular thin sheets as efficient heterogeneous catalysts for the synthesis of 3-substitutetd indoles via yonemitsu-type condensation in water. ACS Sustainable Chemistry and Engineering. 2015;3(7): 1536–1543. DOI: 10.1021/acssuschemeng.5b00236.
  47. Simić ZV, Radović IR, Stijepović MZ, Kijevčanin ML. Liquid-liquid equilibria of the ternary systems water + C1 – C3 alcohols + dimethyl adipate at 298.15 K and atmospheric pressure: experimental data and modeling. Journal of Molecular Liquids. 2023; 377:121542. DOI: 10.1016/j.molliq.2023.121542.
  48. Collins J, Gourdin G, Qu D. Modern applications of green chemistry: renewable energy. In: Török B, Dransfield T, editors. Green chemistry: an inclusive approach. [S. l.]: Elsevier; 2018. p. 771–860. DOI: 10.1016/B978-0-12-809270-5.00028-5.
  49. Clark JH. Renewables and green chemistry. Green Chemistry. 2005;7(2):57. DOI: 10.1039/B500769K.
  50. Wang D, Feng S. Advanced materials for green chemistry and renewable energy. Small. 2019;15(29):1902047. DOI: 10.1002/ smll.201902047.
  51. Xie C, Chen Z, Yoo CG, Shen X, Hou Q, Boudesocque-Delaye L. Editorial: the application of green chemistry in biomass valorization: green route, green catalyst and green solvent. Frontiers in Chemistry. 2023;11:1277256. DOI: 10.3389/fchem.2023.1277256.
  52. Zheng R, Liu Z, Wang Y, Xie Z, He M. The future of green energy and chemicals: rational design of catalysis routes. Joule. 2022;6(6):1148–1159. DOI: 10.1016/j.joule.2022.04.014.
  53. Varma RS. Greener and sustainable trends in synthesis of organics and nanomaterials. ACS Sustainable Chemistry and Engineering. 2016;4(11):5866–5878. DOI: 10.1021/acssuschemeng.6b01623.
  54. Sheldon RA. Green chemistry and resource efficiency: towards a green economy. Green Chemistry. 2016;18(11):3180–3183. DOI: 10.1039/C6GC90040B.
  55. Osigbemhe IG, Louis H, Khan EM, Etim EE, Odey DO, Oviawe AP, et al. Synthesis, characterization, DFT studies, and molecular modeling of 2-(-(2-hydroxy-5-methoxyphenyl)-methylidene)-amino) nicotinic acid against some selected bacterial receptors. Journal of the Iranian Chemical Society. 2022;19:3561–3576. DOI: 10.1007/s13738-022-02550-7.
  56. Varma RS. Greener approach to nanomaterials and their sustainable applications. Current Opinion in Chemical Engineering. 2012;1(2):123–128. DOI: 10.1016/j.coche.2011.12.002.
  57. Grinshpan D, Savitskaya T, Tsygankova N, Makarevich S, Kimlenka I, Ivashkevich O. Good real-world examples of woodbased sustainable chemistry. Sustainable Chemistry and Pharmacy. 2017;5:1–13. DOI: 10.1016/j.scp.2016.11.001.
Published
2024-08-20
Keywords: green chemistry, sustainable synthesis, catalysis, sustainability
How to Cite
Samuel, H. S., Etim, E. E., Nweke-Maraizu, U., & Yakubu, S. (2024). Advancements in green chemistry: sustainable synthesis and processes. Journal of the Belarusian State University. Chemistry, 2, 3-16. Retrieved from https://journals.bsu.by/index.php/chemistry/article/view/6235