Thermolysis of sprayed suspensions for obtaining highly spinel ferrite nanoparticles

  • Elena G. Petrova Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Yana A. Shavshukova Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Dzmitry A. Kotsikau Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Kazimir I. Yanushkevich Scientific and Practical Materials Research Centre, National Academy of Sciences of Belarus, 19 P. Broŭki Street, Minsk 220072, Belarus
  • Konstantin V. Laznev Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 F. Skaryny Street, Minsk 220141, Belarus
  • Vladimir V. Pankov Belarusian State UniversityBelarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

Abstract

Thermal treatment of ferrite magnetic nanoparticles in NaCl matrix gives an opportunity to increase their specific magnetization with preservation of nanoscale size. Composite materials based on mixed ferrites Co0.65Zn0.35Fe2O4 and Mg 0.5Zn0.5Fe2O4 were synthesized by spray-drying of aqueous suspensions in presence of NaCl and annealed at 300 –900 °C. The microstructure and phase composition of nanoparticles before and after annealing were studied by scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction analysis and IR spectroscopy. The magnetic properties of nanoparticles were estimated using a ponderomotive method of measuring the specific magneti zation at room temperature in a magnetic field with an induction of 0.86 T. The increase of the annealing temperature up to 900 °C was established to lead to the increase in the specific magnetization of ferrites – from 32.79 to 91.3 emu/g (Co0.65Zn0.35Fe2O4) and from 2.76 to 22.31 emu/g (Mg 0.5 Zn 0.5Fe2O4) due to recrystallization processes and increase of crystallinity degree of the ferrites. Due to the NaCl insulating layer, the particle size increases just slightly (from ~ 10 nm before annealing to ~ 60 nm after annealing at 900 °C). This method is effective for substantial increase in specific magnetization of ferrite nanoparticles with preservation of their nanoscale size.

Author Biographies

Elena G. Petrova, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

assistant at the department of physical chemistry, faculty of chemistry

Yana A. Shavshukova, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

student at the faculty of chemistry

Dzmitry A. Kotsikau, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (chemistry); associate professor at the department of physical chemistry, faculty of chemistry

Kazimir I. Yanushkevich, Scientific and Practical Materials Research Centre, National Academy of Sciences of Belarus, 19 P. Broŭki Street, Minsk 220072, Belarus

doctor of science (physics and mathematics); leading researcher at the laboratory of magnetic material physics

Konstantin V. Laznev, Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 F. Skaryny Street, Minsk 220141, Belarus

postgraduate student at the laboratory of organic composite materials

Vladimir V. Pankov, Belarusian State UniversityBelarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

doctor of science (chemistry), full professor; head of the department of physical chemistry, faculty of chemistry

References

  1. Pershina AG, Sazonov AE, Milto IV. [Application of magnetic nanoparticles in biomedicine]. Byulleten’ sibirskoi meditsiny. 2008;2:70–78. Russian.
  2. Tatarchuk T, Boudina M, Vijaya JJ, Kennedy LJ. Spinel Ferrite Nanoparticles: Synthesis, Crystal Structure, Properties, and Perspective Applications. In: Fesenko O, Yatsenko L, editors. Nanophysics, Nanomaterials, Interface Studies, and Applications. Selected Proceedings of the 4th International Conference Nanotechnology and Nanomaterials (NANO2016); August 24–27, 2016; Lviv, Ukraine. Cham: Springer; 2017. p. 305–325. DOI: 10.1007/978-3-319-56422-7_22.
  3. Hofmann-Amtenbrink M, Rechenberg von B, Hofmann H. Superparamagnetic nanoparticles for biomedical applications. In: Nanostructured materials for biomedical applications. Kerala, India: Transworld Research Network; 2009. p. 119 –149.
  4. Kolhatkar AG, Jamison AC, Litvinov D, Willson RC, Lee TR. Tuning the magnetic properties of nanoparticles. International Journal of Molecular Sciences. 2013;14(8):15977–16009. DOI: 10.3390/ijms140815977.
  5. Roca AG, Costo R, Rebolledo AF, Veintemillas-Verdaguer S, Tartaj P, González-Carreño T, et al. Progress in the preparation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics. 2009;42(22):224002–224012. DOI: 10.1088/0022-3727/42/22/224002.
  6. Baranov DА, Gubin SP. [Magnetic nanoparticles: achievements and problems of chemical synthesis]. Radioelektronika. Nanosistemy. Informatsionnye tekhnologii. 2009;1(1–2):129–147. Russian.
  7. Martínez B, Obradors X, Balcells LI, Rouanet A, Monty C. Low temperature surface spin-glass transition in γ-Fe2O3 nanoparticles. Physical Review Letters. 1998;80(1):181–184. DOI: 10.1103/PhysRevLett.80.181.
  8. Islam R, Obaidur Rahman Md, Abul Hakim M, Dilip Kumar Saha, Saiduzzaman, Saroaut Noor, Al-Mamun Md. Effect of sintering temperature on structural and magnetic properties of Ni0.55Zn0.45Fe2O4 ferrites. Materials Sciences and Applications. 2012;3(5): 326–331. DOI: 10.4236/msa.2012.35048.
  9. Suzdalev IP, Maksimov YuV, Imshennik VK. Magnetic phase transitions in nanostructures with different cluster orderings. Nanotechnologies in Russia. 2009;4(7–8):467–474. DOI: 10.1134/S1995078009070076.
  10. Pankov V. Modified aerosol synthesis for nanoscale hexaferrite particles preparation. Materials Science and Engineering: A. 1997;224(1–2):101–106. DOI: 10.1016/S0921-5093(96)10565-7.
  11. Schrijnemakers A, Andre S, Lumay G, Vandewalle N, Boschini F, Cloots R, Vertruyen B. Mullite coatings on ceramic substrates: Stabilisation of Al2O3 – SiO2 suspensions for spray drying of composite granules suitable for reactive plasma spraying. Journal of the European Ceramic Society. 2009;29(11):2169–2175. DOI: 10.1016/j.jeurceramsoc.2009.01.031.
  12. Nandiyanto ABD, Iskandar F, Okuyama K. Macroporous anatase titania particle: Aerosol self-assembly fabrication with photocatalytic performance. Chemical Engineering Journal. 2009;152(1):293–296. DOI: 10.1016/j.cej.2009.04.065.
  13. Deo SR, Singh AK, Deshmukh L, Paliwal LJ, Singh RS, Adhikari R. Structural, morphological and optical studies on chemically deposited nanocrystalline CdZnSe thin films. Journal of Saudi Chemical Society. 2014;18(4):327–339. DOI: 10.1016/j.jscs. 2014.01.005.
  14. Yanushkevich КI. Metodika vypolneniya izmerenii namagnichennosti i magnitnoi vospriimchivosti. Sistema obespecheniya edinstva izmerenii Respubliki Belarus’. MVI. MI 3128-2009. Minsk: NII TZI; 2009. 19 p. Russian. Co-published by the BelSIM.
  15. Eltabey MM, Aboulfotoh AN. Effect of annealing temperature on structural and magnetic properties of Co-Zn ferrite nanoparticles. International Journal of Advanced Research. 2014;2(6):184–192.
  16. Sato Turtelli R, Atif M, Mehmood N, Kubel F, Biernacka K, Linert W, et al. Interplay between the cation distribution and production methods in cobalt ferrite. Materials Chemistry and Physics. 2012;132(2–3):832–838. DOI: 10.1016/j.matchemphys.2011.12.020.
  17. Gopalan EV, Joy PA, Al-Omari IA, Sakthi Kumar D, Yasuhiko Yoshida, Anantharaman MR. On the structural, magnetic and electrical properties of sol-gel derived nanosized cobalt ferrite. Journal of Alloys and Compounds. 2009;485(1–2):711–717. DOI: 10.1016/j.jallcom.2009.06.033.
  18. Cannas C, Falqui A, Musinu A, Peddis D, Piccaluga G. CoFe2O4 nanocrystalline powders prepared by citrate-gel methods: Synthesis, structure and magnetic properties. Journal of Nanoparticle Research. 2006;8(2):255–267. DOI: 10.1007/s11051-005-9028-7.
Published
2019-02-15
Keywords: magnetic nanoparticles, spinel ferrites, spray-drying, crystallinity, heat treatment
Supporting Agencies This work has been performed with a financial support of Belarusian Republican Foundation for Fundamental Research (grant No. Х17МС-016).
How to Cite
Petrova, E. G., Shavshukova, Y. A., Kotsikau, D. A., Yanushkevich, K. I., Laznev, K. V., & Pankov, V. V. (2019). Thermolysis of sprayed suspensions for obtaining highly spinel ferrite nanoparticles. Journal of the Belarusian State University. Chemistry, 1, 14-21. https://doi.org/10.33581/2520-257X-2019-1-14-21