Флуоресцентные свойства и белок-лигандные взаимодействия молекулярного ротора на основе бордипиррометена

  • Анастасия Руслановна Дудко Научно-исследовательский институт физико-химических проблем БГУ, ул. Ленинградская, 14, 220006, г. Минск, Беларусь https://orcid.org/0000-0002-9961-5587
  • Матвей Сергеевич Хорецкий Научно-исследовательский институт физико-химических проблем БГУ, ул. Ленинградская, 14, 220006, г. Минск, Беларусь https://orcid.org/0000-0003-3065-6214
  • Нина Степановна Фролова Научно-исследовательский институт физико-химических проблем БГУ, ул. Ленинградская, 14, 220006, г. Минск, Беларусь
  • Ярослав Вячеславович Фалетров Научно-исследовательский институт физико-химических проблем БГУ, ул. Ленинградская, 14, 220006, г. Минск, Беларусь; Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь
  • Владимир Макарович Шкуматов Научно-исследовательский институт физико-химических проблем БГУ, ул. Ленинградская, 14, 220006, г. Минск, Беларусь; Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Аннотация

Получен и охарактеризован флуоресцентный молекулярный ротор (ФМР) на основе 4,4-дифтор-4-бора-3а,4адиаза-S-индацена. Параметры эмиссии флуоресценции соединения в значительной мере зависят от изменения вязкости среды. Так, увеличение вязкости системы при переходе из среды этанола в среду глицерина приводит к росту интенсивности эмиссии флуоресценции полученного ФМР в 27 раз. Вместе с этим соединение не обладает ярко выраженным сольватохромизмом. Рассмотренный ФМР способен также аффинно связываться с бычьим сывороточным альбумином, что подтверждается увеличением интенсивности эмиссии флуоресценции соединения при их взаимодействии. Методом молекулярного докинга определены два возможных сайта связывания соединения и описано ближайшее аминокислотное окружение лиганда. Полученные данные могут быть использованы для создания новых флуоресцентных сенсоров вязкости и белок-лигандных взаимодействий в биосистемах in vitro и in vivo.

Биографии авторов

Анастасия Руслановна Дудко, Научно-исследовательский институт физико-химических проблем БГУ, ул. Ленинградская, 14, 220006, г. Минск, Беларусь

стажер младшего научного сотрудника лаборатории биохимии лекарственных препаратов

Матвей Сергеевич Хорецкий, Научно-исследовательский институт физико-химических проблем БГУ, ул. Ленинградская, 14, 220006, г. Минск, Беларусь

младший научный сотрудник лаборатории биохимии лекарственных препаратов

Нина Степановна Фролова, Научно-исследовательский институт физико-химических проблем БГУ, ул. Ленинградская, 14, 220006, г. Минск, Беларусь

научный сотрудник лаборатории биохимии лекарственных препаратов

Ярослав Вячеславович Фалетров, Научно-исследовательский институт физико-химических проблем БГУ, ул. Ленинградская, 14, 220006, г. Минск, Беларусь; Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

кандидат химических наук, доцент; ведущий научный сотрудник лаборатории биохимии лекарственных препаратов Научно-исследовательского института физико-химических проблем БГУ; доцент кафедры высокомолекулярных соединений химического факультета Белорусский государственный университет

Владимир Макарович Шкуматов, Научно-исследовательский институт физико-химических проблем БГУ, ул. Ленинградская, 14, 220006, г. Минск, Беларусь; Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

член-корреспондент НАН Беларуси, доктор биологических наук, профессор; главный научный сотрудник лаборатории биохимии лекарственных препаратов Научно-исследовательского института физико-химических проблем БГУ, профессор кафедры высокомолекулярных соединений химического факультета Белорусского государственного университета

Литература

1. Pratt A, Garcia-Effron G, Zhao Y, Park S, Mustaev A, Pillai S, et al. Evaluation of fungal-specific fluorescent labeled echinocandin probes as diagnostic adjuncts. Medical Mycology. 2013;51(1):103-107. DOI: 10.3109/13693786.2012.685767.
2. Sameiro M, Gonçalves T. Fluorescent labeling of biomolecules with organic probes. Chemical Reviews. 2009;109(1):190-212. DOI: 10.1021/Cr0783840.
3. Faletrov Y V., Efimova VS, Horetski MS, Tugaeva K V., Frolova NS, Lin Q, et al. New 20-hydroxycholesterol-like compounds with fluorescent NBD or alkyne labels: Synthesis, in silico interactions with proteins and uptake by yeast cells. Chemistry and Physics of Lipids. 2020;227(December):104850. DOI: 10.1016/J.Chemphyslip.2019.104850.
4. Horetski M, Faletrov Y, Rudaya E, Shkumatov V. Fluorescent BODIPY dyes as ligands for major steroidogenic proteins: in silico evaluation. 2018;(1):22-27.
5. Hölttä-Vuori M, Uronen RL, Repakova J, Salonen E, Vattulainen I, Panula P, et al. BODIPY-cholesterol: A new tool to visualize sterol trafficking in living cells and organisms. Traffic. 2008;9(11):1839-1849. DOI: 10.1111/J.1600-0854.2008.00801.X.
6. Gee KR, Kang HC, Meier TI, Zhao G, Blaszcak LC. Fluorescent Bocillins: Synthesis and application in the detection of penicillin-binding proteins. Electrophoresis. 2001;22(5):960-965. DOI: 10.1002/1522-2683()22:5<960::AID-ELPS960>3.0.CO;2-9.
7. Masson JM, Labia R. Synthesis of a 125I-radiolabeled penicillin for penicillin-binding proteins studies. Analytical Biochemistry. 1983;128(1):164-168. DOI: 10.1016/0003-2697(83)90357-3.
8. Preston DA, Wu CYE, Blaszczak LC, Seitz DE, Halligan NG. Biological characterization of a new radioactive labeling reagent for bacterial penicillin-binding proteins. Antimicrobial Agents and Chemotherapy. 1990;34(5):718-721. DOI: 10.1128/AAC.34.5.718.
9. Guterres MFAN, Ronconi CM. Artificial Molecular Machines. Vol 1.; 2009. DOI: 10.5935/1984-6835.20090013.
10. Kottas GS, Clarke LI, Horinek D, Michl J. Artificial molecular rotors. Chemical Reviews. 2005;105(4):1281-1376. DOI: 10.1021/Cr0300993.
11. Kung CE, Reed JK. Fluorescent Molecular Rotors: A New Class of Probes for Tubulin Structure and Assembly. Biochemistry. 1989;28(16):6678-6686. DOI: 10.1021/Bi00442a022.
12. Uzhinov BM, Ivanov VL, Melnikov MY. Molecular rotors as luminescence sensors of local viscosity and viscous flow in solutions and organized systems. Russian Chemical Reviews. 2011;80(12):1179-1190. DOI: 10.1070/Rc2011v080n12abeh004246.
13. Zubenko GS, Kopp U, Seto T, Firestone LL. Platelet membrane fluidity individuals at risk for Alzheimer’s disease: A comparison of results from fluorescence spectroscopy and electron spin resonance spectroscopy. Psychopharmacology. 1999;145(2):175-180. DOI: 10.1007/S002130051046.
14. Nadiv O, Shinitzky M, Manu H, Hecht D, Roberts CT, LeRoith D, et al. Elevated protein tyrosine phosphatase activity and increased membrane viscosity are associated with impaired activation of the insulin receptor kinase in old rats. Biochemical Journal. 1994;298(2):443-450. DOI: 10.1042/Bj2980443.
15. Deliconstantinos G, Villiotou V, Stavrides JC. Modulation of particulate nitric oxide synthase activity and peroxynitrite synthesis in cholesterol enriched endothelial cell membranes. Biochemical Pharmacology. 1995;49(11):1589-1600. DOI: 10.1016/0006-2952(95)00094-G.
16. Haidekker MA, Theodorakis EA. Environment-sensitive behavior of fluorescent molecular rotors. Journal of Biological Engineering. 2010;4:1-14. DOI: 10.1186/1754-1611-4-11.
17. Ziaunys M, Sakalauskas A, Smirnovas V. Identifying Insulin Fibril Conformational Differences by Thioflavin-T Binding Characteristics. Biomacromolecules. 2020;21(12):4989-4997. DOI: 10.1021/Acs.Biomac.0c01178.
18. Amdursky N, Erez Y, Huppert D. Molecular rotors: What lies behind the high sensitivity of the thioflavin-T fluorescent marker. Accounts of Chemical Research. 2012;45(9):1548-1557. DOI: 10.1021/Ar300053p.
19. Maskevich AA, Stsiapura VI, Kuzmitsky VA, Kuznetsova IM, Povarova OI, Uversky VN, et al. Spectral properties of thioflavin T in solvents with different dielectric properties and in a fibril-incorporated form. Journal of Proteome Research. 2007;6(4):1392-1401. DOI: 10.1021/Pr0605567.
20. Kamkaew A, Lim SH, Lee HB, Kiew LV, Chung LY, Burgess K. BODIPY dyes in photodynamic therapy. Chemical Society Reviews. 2013;42(1):77-88. DOI: 10.1039/C2cs35216h.
21. Miao W, Yu C, Hao E, Jiao L. Functionalized BODIPYs as Fluorescent Molecular Rotors for Viscosity Detection. Frontiers in Chemistry. 2019;7(November):1-6. DOI: 10.3389/Fchem.2019.00825.
22. Boens N, Leen V, Dehaen W. Fluorescent indicators based on BODIPY. Chemical Society Reviews. 2012;41(3):1130-1172. DOI: 10.1039/C1cs15132k.
23. Cao J, Peng X, Jung H, Kang C, Kim JS. Mitochondrial Viscosity.Pdf. Published online 2013:36-40.
24. Su D, Teoh CL, Gao N, Xu QH, Chang YT. A simple bodipy-based viscosity probe for imaging of cellular viscosity in live cells. Sensors (Switzerland). 2016;16(9). DOI: 10.3390/S16091397.
25. Kashirina AS, López-Duarte I, Kubánková M, Gulin AA, Dudenkova V V., Rodimova SA, et al. Monitoring membrane viscosity in differentiating stem cells using BODIPY-based molecular rotors and FLIM. Scientific Reports. 2020;10(1):1-12. DOI: 10.1038/S41598-020-70972-5.
26. Marfin YS, Aleksakhina EL, Merkushev DA, Rumyantsev E V., Tomilova IK. Interaction of BODIPY Dyes with the Blood Plasma Proteins. Journal of Fluorescence. 2016;26(1):255-261. DOI: 10.1007/S10895-015-1707-X.
27. Vodyanova OS, Kochergin BA, Usoltsev SD, Marfin YS, Rumyantsev E V., Aleksakhina EL, et al. BODIPY dyes in bio environment: Spectral characteristics and possibilities for practical application. Journal of Photochemistry and Photobiology A: Chemistry. 2018;350:44-51. DOI: 10.1016/J.Jphotochem.2017.09.049.
28. Dzyuba S V. BODIPY Dyes as Probes and Sensors to Study Amyloid-β-Related Processes. Biosensors. 2020;10(12). DOI: 10.3390/Bios10120192.
29. Kubánková M, López-Duarte I, Bull JA, Vadukul DM, Serpell LC, de Saint Victor M, et al. Probing supramolecular protein assembly using covalently attached fluorescent molecular rotors. Biomaterials. 2017;139:195-201. DOI: 10.1016/J.Biomaterials.2017.06.009.
30. Tiwari R, Shinde PS, Sreedharan S, Dey AK, Vallis KA, Mhaske SB, et al. Photoactivatable prodrug for simultaneous release of mertansine and CO along with a BODIPY derivative as a luminescent marker in mitochondria: a proof of concept for NIR image-guided cancer therapy. Chemical Science. 2021;12(7):2667-2673. DOI: 10.1039/D0sc06270g.
31. Testolin G, Cirnski K, Rox K, Prochnow H, Fetz V, Grandclaudon C, et al. Synthetic studies of cystobactamids as antibiotics and bacterial imaging carriers lead to compounds with high: In vivo efficacy. Chemical Science. 2020;11(5):1316-1334. DOI: 10.1039/C9sc04769g.
32. Adhikari S, Moscatelli J, Smith EM, Banerjee C, Puchner EM. Single-molecule localization microscopy and tracking with red-shifted states of conventional BODIPY conjugates in living cells. Nature Communications. 2019;10(1):1-12. DOI: 10.1038/S41467-019-11384-6.
33. Guan Q, Fu DD, Li YA, Kong XM, Wei ZY, Li WY, et al. BODIPY-Decorated Nanoscale Covalent Organic Frameworks for Photodynamic Therapy. iScience. 2019;14:180-198. DOI: 10.1016/J.Isci.2019.03.028.
34. Sun S, Zhuang X, Wang L, Liu B, Zhang B, Chen Y. BODIPY-based conjugated polymer covalently grafted reduced graphene oxide for flexible nonvolatile memory devices. Carbon. 2017;116:713-721. DOI: 10.1016/J.Carbon.2017.02.034.
35. Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. Journal of Chemical Physics. 1999;110(13):6158-6170. DOI: 10.1063/1.478522.
36. Tsuzuki S, Uchimaru T. Accuracy of intermolecular interaction energies, particularly those of hetero-atom containing molecules obtained by DFT calculations with Grimme’s D2, D3 and D3BJ dispersion corrections. Physical Chemistry Chemical Physics. 2020;22(39):22508-22519. DOI: 10.1039/D0cp03679j.
37. Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracyElectronic supplementary information (ESI) available:[DETAILS]. See http://dx. doi. org/10.1039/b508541a. Phys Chem Chem Phys. 2005;7:3297-3305.
38. Neese F. The ORCA program system. Wiley Interdisciplinary Reviews: Computational Molecular Science. 2012;2(1):73-78. DOI: 10.1002/Wcms.81.
39. Neese F. Software update: the ORCA program system, version 4.0. Wiley Interdisciplinary Reviews: Computational Molecular Science. 2018;8(1):1-6. DOI: 10.1002/Wcms.1327.
40. Allouche A. Software News and Updates Gabedit — A Graphical User Interface for Computational Chemistry Softwares. Journal of computational chemistry. 2012;32:174-182. DOI: 10.1002/Jcc.
41. Wagner RW, Lindsey JS. Boron-dipyrromethene dyes for incorporation in synthetic multi-pigment light-harvesting arrays. Pure and Applied Chemistry. 1996;68(7):1373-1380. DOI: 10.1351/Pac199668071373.
42. Evans C, Cook S, Taylor J. Assessing the Need and Identifying the Response. Journal of vascular surgery. 2014;59(6 Suppl):1-3. http://www.ncbi.nlm.nih.gov/pubmed/24834502
43. Alkindi AS, Al-Wahaibi YM, Muggeridge AH. Physical properties (density, excess molar volume, viscosity, surface tension, and refractive index) of ethanol + glycerol. Journal of Chemical and Engineering Data. 2008;53(12):2793-2796. DOI: 10.1021/Je8004479.
44. Amorim VG, Melo SMG, Leite RF, Coutinho PA, da Silva SMP, Silva AR, et al. Synthesis and characterization of two novel red-shifted isothiocyanate BODIPYs and their application in protein conjugation. Dyes and Pigments. 2020;182(February). DOI: 10.1016/J.Dyepig.2020.108646.
45. Giernoth R. Solvents and Solvent Effects in Organic Chemistry. 4th Ed. By Christian Reichardt and Thomas Welton. Angewandte Chemie International Edition. 2011;50(48):11289-11289. DOI: 10.1002/Anie.201105531.
46. Lee SC, Heo J, Woo HC, Lee JA, Seo YH, Lee CL, et al. Fluorescent Molecular Rotors for Viscosity Sensors. Chemistry - A European Journal. 2018;24(52):13706-13718. DOI: 10.1002/Chem.201801389.
47. Liu X, Chi W, Qiao Q, Kokate S V., Cabrera EP, Xu Z, et al. Molecular Mechanism of Viscosity Sensitivity in BODIPY Rotors and Application to Motion-Based Fluorescent Sensors. ACS Sensors. 2020;5(3):731-739. DOI: 10.1021/Acssensors.9b01951.
48. Aguilera-Garrido A, del Castillo-Santaella T, Yang Y, Galisteo-González F, Gálvez-Ruiz MJ, Molina-Bolívar JA, et al. Applications of serum albumins in delivery systems: Differences in interfacial behaviour and interacting abilities with polysaccharides. Advances in Colloid and Interface Science. 2021;290. DOI: 10.1016/J.Cis.2021.102365.
49. Abou-Zied OK, Al-Lawatia N. Exploring the Drug-Binding Site Sudlow i of Human Serum Albumin: The Role of Water and Trp214 in Molecular Recognition and Ligand Binding. ChemPhysChem. 2011;12(2):270-274. DOI: 10.1002/Cphc.201000742.
50. Joshi R, Jadhao M, Kumar H, Ghosh SK. Is the Sudlow site I of human serum albumin more generous to adopt prospective anti-cancer bioorganic compound than that of bovine: A combined spectroscopic and docking simulation approach. Bioorganic Chemistry. 2017;75:332-346. DOI: 10.1016/J.Bioorg.2017.10.013.
Опубликован
2022-04-07
Ключевые слова: бордипиррометен, бычий сывороточный альбумин, молекулярный докинг, молекулярный ротор, флуоресценция
Поддерживающие организации Работа выполнена при поддержке Белорусского фонда фундаментальных исследований (грант № Х21М-059) и в рамках государственной программы научных исследований «Химические технологии и материалы».
Как цитировать
Дудко, А. Р., Хорецкий, М. С., Фролова, Н. С., Фалетров, Я. В., & Шкуматов, В. М. (2022). Флуоресцентные свойства и белок-лигандные взаимодействия молекулярного ротора на основе бордипиррометена. Журнал Белорусского государственного университета. Химия, 1, 61-71. https://doi.org/10.33581/2520-257X-2022-1-61-71