Environmentally friendly lead-free soldering materials based on rapidly solidified Al-Sn foil (microstructure and stability)

  • Olga V. Gusakova International Sakharov Environmental Institute, Belarusian State University
  • Hanna N. Skibinskaya International Sakharov Environmental Institute, Belarusian State University
  • Yuliya M. Shulya International Sakharov Environmental Institute, Belarusian State University

Abstract

The results of the microstructure of the foil of Al-Sn system alloys with an aluminum contend of up to 10 at. % obtained by ultrafast quenching from a melt at a melt cooling rate of 10 5 K/s. The foil of alloys of eutectic and near-eutectic compositions solidifies with the formation of a tin-based solid solution supersaturated with aluminum. Aluminum particles the size of which does not exceed 200 nm precipitate at the grains volume and at the grains boundaries at room temperature, as a result of the continuous decomposition of the solid solution. The microstructure of the Al – 94,2 аt. % Sn and Al – 90,7 аt. % Sn foil, in addition to, contains not only nanoscale Al inclusions but large ones whose size grows with distance from the surface of the foil adjacent to the mold. A rapidly solidified foil has a microcrystalline structure. The formation of twins is observed in the Al – 97,8 аt. % Sn и Al – 96,7 аt. % Sn foil. With an increase in Al concentration, the average grain size decreases, and the number of twins increases. Ageing of the foil at room temperature leads to an increase in the Al concentration at the grain boundaries in the eutectic and near- eutectic alloys and to the formation of whiskers in the foil of alloys with an Al concentration exceeding 3 at. %.

Author Biographies

Olga V. Gusakova, International Sakharov Environmental Institute, Belarusian State University

PhD (physics and mathematics), docent; associate professor at the department of nuclear and radiation safety

Hanna N. Skibinskaya, International Sakharov Environmental Institute, Belarusian State University

senior lecturer at the department of nuclear and radiation safety

Yuliya M. Shulya, International Sakharov Environmental Institute, Belarusian State University

senior lecturer at the department of energy efficient technologies

References

  1. Белов НА, Миронов АЕ, Столярова ОО. Алюминиевые сплавы антифрикционного назначения. Москва: Издательский Дом МИСиС; 2016. 222 с.
  2. Abbas YM, Hassan Ibrahim A, Mosaad S, Orabi M. Hydrogen production using Al-Sn alloys prepared by rapid solidification. Journal of Advances in Physics. 2017;13(6):4971–4984. DOI: 10.24297/jap.v13i6.6194.
  3. Alam ME, Gupta M. Development of extremely ductile lead-free Sn-Al solders for futuristic electronic packaging applications. Electronic Materials Letters. 2014;10(2):515–524. DOI: 10.1007/s13391-013-3087-1.
  4. Далакова НВ, Елекоева КМ, Кашежев АЗ, Манукянц АР, Прохоренко АД, Понежев МХ, Созаев ВА. Политермы углов смачивания алюминия и алюминий-литиевого сплава расплавами на основе олова. Поверхность: Рентгеновские, синхротронные и нейтронные исследования. 2014;4:60–63. DOI: 10.7868/S020735281404012X.
  5. Пашков ИН, Пикунов МВ, Таволжский СА, Пашков АИ. Разработка процессов получения и применения сплавов припоев в дисперсионном состоянии с микроскопической или аморфной структурой. Металлург. 2010;6:43–45.
  6. Eman Dr, Abel J. Study Microstructure and Mechanical Properties of Rapidly Solidified of Al-Sn oy Melt Spinning. International Journal of Mechanical & Mechatronics Engineering. 2015;15(4):53–61.
  7. Tarek EA. Amorphous and metastable crystalline structures in rapidly solidified Sn-Al system using melt-spinning technique. Radiation Effects & Defects in Solids. 2004;159:535–538. DOI: 10.1080/10420150412331323041.
  8. Reeve KN, Choquette SM, Anderson IE, Handwerke CA. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part I. Microstructural Characterization of Rapidly Solidified Solders. Metallurgical and Materials Transactions. 2016;47(12):6507−6525. DOI: 10.1007/s11661-016-3738-6.
  9. Александров ВД, Постников ВА. Зависимость предкристаллизационного переохлаждения расплава висмута от массы образцов. В: Письма в Журнал экспериментальной и теоретической физики. 2003;29(7):48–54.
  10. Herlach DM. Nonequilibrium solidification of undercooled melts. Materials Science Engineering. 1994;R12(4−5):177−272. DOI: 10.1063/1.2903920.
  11. Лякишева НП, редактор. Диаграммы состояния двойных металлических систем. Справочник. Москва: Машиностроение; 1996. 992 с.
  12. Галенко ПК, Херлах ДМ. Бездиффузионный рост кристаллов в эвтектической системе при высокоскоростном затвердевании. Журнал экспериментальной и теоретической физики. 2006;130(1):170−180.
  13. Никольский БП, Рабинович РА, редакторы. Справочник химика. 2-е издание. Москва –Ленинград: Химия; 1966. Том 1. 1071 с.
  14. Gusakova O, Shepelevich V. The influence of melt flow on grain structure of tin and its alloys produced by ultrafast quenching from the melt. In: Structural and Phase Transformations in Materials: Theory, Computer Modelling and Experiment. International Conference 2017 March 23−27, Ekaterinburg, Russian Federation. IOP Conference Series: Materials Science and Engineering. Ekaterinburg: [publisher unknown]; 2017. Volume 192. p. 1–6. DOI: 10.1088/1757 899X/192/1/012015.
  15. Tu KN, Changpin Chen, Albert T. Wu Stress analysis of spontaneous Sn whisker growth. Journal of Materials Science: Materials Electronics. 2007;18:269–282. DOI:10.1007/s10854-006-9029-z.
  16. Osenbach JW, DeLucca JM, Potteiger BD, Amin A, Baiocchi FA. Sn-whiskers: truths and myths. Journal Materials Science: Materials Electronics. 2007;18:283–305. DOI:10.1007/s10854-0069030-6.
Published
2020-10-20
Keywords: aluminum, tin, rapid solidification, microstructure, stability
How to Cite
Gusakova, O. V., Skibinskaya, H. N., & Shulya, Y. M. (2020). Environmentally friendly lead-free soldering materials based on rapidly solidified Al-Sn foil (microstructure and stability). Journal of the Belarusian State University. Ecology, 1, 83-91. Retrieved from https://journals.bsu.by/index.php/ecology/article/view/3345
Section
Industrial and Agricultural Ecology