Priming of defense reaction in plants under patogenesis: Induced immunity

  • Liudmila F. Kabashnikova Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus

Abstract

The article presents modern ideas about the molecular and cellular bases of systemic acquired resistance (SAR) and induced systemic resistance (ISR) of plants - two forms of induced resistance in which the protective properties of plants are caused by a previous infection or treatment by immunomodulators. The main mechanisms of priming of protective reactions under the pathological process with the participation of natural resistance inducers and ways of their implementation in plants are characterized.

Author Biography

Liudmila F. Kabashnikova, Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus

corresponding member of National Academy of Sciences of Belarus; doctor of science (biology), docent; head of the laboratory of applied biophysics and biochemistry

References

  1. World Food and Agriculture – Statistical pocketbook 2019. Rome: FAO; 2019. 254 p.
  2. Лыжин ДН. Современные тенденции мирового рынка минеральных удобрений и средств защиты растений: конкурентные позиции России. Проблемы национальной стратегии. 2016;3(36):123-142.
  3. Anket Sharma, Vinod Kumar, Babar Shahzad, et al. Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences. 2019;1:14–46. DOI: 10.1007/s42452-019-1485-1.
  4. Злотников АК. Разработка и комплексная характеристика полифункционального препарата Альбит для защиты растений от болезней и стрессов [автореферат диссертации]. Москва: [б. н.]; 2012. 47 с.
  5. Монастырский OA. Задачи и перспективы биологической защиты сельскохозяйственных растений. АГРО ХХI. 2010;(4-6):3–5.
  6. Поликсенова ВД. Индуцированная устойчивость растений к патогенам и абиотическим стрессовым факторам (на примере томата). Вестник БГУ. Серия 2. 2009;1:48–60.
  7. Пашкевич ЛВ, Кабашникова ЛФ. Роль салициловой кислоты в формировании системной приобретенной устойчивости растений при патогенезе. Вестник Харьковского национального аграрного университета: Серия Биология. 2018;3(45):31–48.
  8. Кабашникова ЛФ, Савченко ГЕ, Абрамчик ЛМ, и др. Действие иммуномодулирующего препарата на основе b-аминомасляной кислоты на структурно-функциональное состояние растений ярового ячменя (Hordeum vulgare L.). В: Ботаника (исследования). Сборник научных трудов. Минск: Колоград; 2016:45:309–323.
  9. Шпилевский СН, Кабашникова ЛФ, Савченко ГЕ, и др. Влияние β-1,3-глюкана на окислительный и пигментный статус растений томата при фузариозном увядании. В: Ботаника (исследования). Сборник научных трудов. Минск Колоград; 2017;46:264–274.
  10. Gao Q-M, Zhu S, Kachroo P, et al. Signal regulators of systemic acquired resistance. Frontiers Plant Science. 2015;6:228. DOI: 10.3389/fpls.2015.00228.
  11. Wendehenne D, Gao QM, Kachroo A, et al. Free radical-mediated systemic immunity in plants. Current Opinion in Plant Biology. 2014;20:127–134. DOI: 10.1016/j.pbi.2014.05.012.
  12. Gary E Vallad and Robert M. Goodman. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science. 2004;44:1920–1934. DOI: 10.2135/cropsci2004.1920.
  13. Návarová H, Bernsdorff F, Döring AC, et al. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell. 2012;24:5123–5141. DOI: 10.1105/tpc.112.103564
  14. Paz Aranega-Bou, Maria de la O Leyva, Ivan Finiti, et al. Priming of plant resistance by natural compounds. Hexanoic acid as a model. Frontiers Plant Science. 2014;5:1–12. DOI :10.3389/fpls.2014.00488.
  15. Zhou J, Sun AZ, Xing D. Modulation of cellular redox status by thiamine-activated NADPH oxidase confers Arabidopsis resistance to Sclerotinia sclerotiorum. Journal Experimental Botany. 2013;64:3261–3272. DOI: 10.1093/jxb/ert166.
  16. Azami-Sardooei Z, Franca SC, De Vleesschauwer D, et al. Riboflavin induces resistance against Botrytis cinerea in bean, but not in tomato, by priming for a hydrogen peroxide-fueled resistance response. Physiological and Molecular Plant Pathology. 2010;75;23–29. DOI: 10.1016/j.pmpp.2010.08.001.
  17. Vivaldo G, Masi E, Taiti C, et al. The network of plants volatile organic compounds. Scientific Reports. 2017;7:1–18. DOI: 10.1038/s41598-017-10975-x.
  18. Yigal Cohen, Moshe Vaknin, Brigitte Mauch-Mani. BABA-induced resistance: milestones along a 55-year journey. Available from: https://www.researchgate.net/publication/309381840 BABA-induced resistance milestones along a 55-year journey. Phytoparasitica. 2016. p. 1–17. DOI: 10.1007/s12600-016-0546-x.
  19. Damien Thevenet, Victoria Pastor, Ivan Baccelli, et al. The priming molecule β-aminobutyric acid is naturally present in plants and is induced by stress. New Phytologist. 2017;213:552–559. DOI: 10.1111/nph.14298.
Published
2021-01-15
Keywords: phytopathogens, induced immunity, systemic acquired resistance (SAR), induced systemic resistance (ISR), plant resistance inducers, metabolic pathway, priming
How to Cite
Kabashnikova, L. F. (2021). Priming of defense reaction in plants under patogenesis: Induced immunity. Journal of the Belarusian State University. Ecology, 4, 19-29. Retrieved from https://journals.bsu.by/index.php/ecology/article/view/3641
Section
The Study and Rehabilitation of Ecosystems