Assessment of the influence of the level of mineral nutrition on the morphological parameters and accumulation of biogenous elements in the biomass of the fast-growing willoow
Abstract
The article presents the results of studies for assessment of the influence of the level of mineral nutrition on the morphological parameters and accumulation of biogenic elements in the biomass of the fast-growing willow Salix alba, cv. Volmyanka. A vegetation experiment to study the dependence of the morphological parameters of willow and the accumulation of nitrogen and phosphorus in the biomass of plants on the level of mineral nutrition have been done at the experimental site (53°55’24.6 “N,27°40’04.7” E) of the Institute of Research institute of nature management Academy of science of Belarus. The vegetation experiment was based on the following options: control, without additional application of mineral fertilizers; option N50P50 (dose of application 0.5 g per vessel); option N100P100 (the dose of application is 3.0 g per vessel); option N150P150 (dose of application 4.5 g). In the vegetation experiments, the dependences of the content of total nitrogen (Ntot) and Р2О5 in the biomass of a willow plant from the doses of mineral fertilizers and the content of mineral nitrogen Nmin) and Р2О5 in the soil were obtained. The influence of the content of Nmin (N-O3 + NH4) in the soil on the content of Ntot in the plant biomass is expressed by a high degree of quantitative and qualitative characteristics of the correlation (R2 = 0.778). The influence of the content of mobile phosphorus in the soil (from 200 to 600 mg/kg) on the content of Р2О5 in the plant biomass is expressed by a moderate quantitative and qualitative characteristic of the correlation (R2 = 0.403); (from 600 to 900 mg/kg) - very high (R2 = 0.928). The influence of mineral fertilizers on the content of Р2О5 and Ntot in the aboveground plant biomass during the growing season has been established. The influence of the doses of mineral fertilizers on the productivity and morphological parameters of the aboveground biomass of willow plants has been determined. The research results confirm the assumption about the possibility of using the plantation of fast-growing willow (Salix alba), cv. Volmyanka, as a vegetative filter capable to accumulate nitrogen and phosphorus in the plant biomass, preventing their penetration into water bodies and reducing the risk of eutrophication.
References
2. Hammar T, Hansson P-A, Sundberg C. Climate impact assessment of willow energy from a landscape perspective: a Swedish case study. GCB Bioenergy. 2017;9:973-985.
3. Aronsson P, Perttu K. Willow vegetation filters for wastewater treatment and soil remediation combined with biomass production. Forestry Chronicle. 2001;77:293-299.
4. Dimitriou I, Rosenqvist H. Sewage sludge and wastewater fertilization of Short Rotation Coppice (SRC) for increased bioenergy production. Biological and economic potential. Biomass and Bioenergy. 2011;35:835-842.
5. Dimitriou I, Aransson P. Wastewater phytoremediation treatment system in Sweden using short rotation willow coppice. Short rotation crops for bioenergy. In: IEA Bioenergy task 30. Proceedings of the Conference, 1-5 December 2003, Mount Maunganui. Tauranga, New Zealand: International Energy Agency; 2003. p. 225-228.
6. Dimitriou I, Aransson P. Willows for energy and phytoremediation in Sweden. Unasylva. 2005;56:47-50.
7. Bollmark L, Sennerby-Forsse L, Ericsson T. Seasonal dynamics and effects of nitrogen supply rate on nitrogen and carbohydrate reserves in cutting-derived willow (Salix viminalis L.) plants. Canadian Journal of Forest Research. 1999;29:85-94.
8. Rytter L, Ericsson T. Leaf nutrient analysis in Salix viminalis L. energy forest stands growing on agricultural land. Zeitschriftfur Pflanzenernahrung undBodenkunde. 1993;156:349-356.
9. Fircks Y, Ericsson T, Sennerby-Forsse L. Seasonal variation of macronutrients in leaves, stems and roots of Salix dasyclados Wimm. grown at two nutrient levels. Biomass and Bioenergy. 2001;21:321-334.
10. Nilsson L-O, Ericsson T. Influence of shoot age on growth and nutrient uptake patterns in a willow plantation. Canadian Journal of Forest Research. 1986;16:185-190.
11. Sennerby-Forsse L, Fircks HA. Ultrastructure of cells in the cambial region during winter harding and spring dehardening in Salix dasyclados Wimm. grown at two nutrient levels. Trees.1987:151-163.
12. Rytter RM. Fine-root production and carbon and nitrogen allocation in basket willows [PhD thesis]. Silvestria: Swedish University of Agricultural Science; 1997. 36 р.
13. Dickson RE. Assimilate distribution and storage. Physiology of trees. 1991:51-85.
14. Ericsson T. Nutrient dynamics and requirements of forest crops. Journal of Forestry Science. 1994;24(2-3):133-168.
15. Titus JS, Kang S-M. Nitrogen metabolism, translocation and recycling in apple trees. Horticultural Reviews. 1982;4:204-246.
16. Chapin FS, Kedrowski RA. Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology. 1983;64: 376-391.
17. Stepien V, Brun A, Botton B, Martin F. Protein bodies in bark cells of Populus x euramericana. C. R. Academy Sciense Paris. 1991;313:153-158.
18. Bernier B. Nutrient cycling in Populus: A literature review with implications in intensively managed plantations. In: IEA/ENFOR Report 5. Ottawa: Canadian Forest Service; 1984. 46 p.
19. Glavac V, Jochheim H. A contribution to understanding the internal nitrogen budget of beech (Fagus sylvatica L.). Trees. 1993;7:237-241.
20. Fircks von Y. Distribution and seasonal variation of macro-nutrients, starch and radio-nuclides in short rotation Salix plantations Department of Short Rotation Forestry. Uppsala: Swedish University of Agricultural Sciences; 2000. 41 р.
21. Бейня ВА, редактор. Государственный реестр сортов. Минск: Государственная инспекция по испытанию и охране сортов растений; 2017. 225 с.
22. Доспехов БА. Методика полевого опыта (с основами статистической обработки результатов исследований). Москва: Агропромиздат, 1985. 351 с.
23. Государственный реестр средств защиты растений и удобрений, разрешенных к применению на территории Республики Беларусь. Минск: Главная государственная инспекция по семеноводству, карантину и защите растений; 2017. 152 p.
24. Фролова АА, Анцелович МЕ, редакторы. Агрохимические методы исследования почв. Москва: Наука; 1965. 436 с.