The influence of the duration of led lighting on the biochemical composition of the peas microgreens
Abstract
The results of a comparative study of the effect of the duration of LED lighting are presented (8, 10, 12, 14, 16 hour) on 13 characteristics of the biochemical composition of vegetable peas microgreens (Pavlusha variety) - the content of dry, tannic and pectin substances, free organic, ascorbic and hydroxycinnamic acids, soluble sugars, total protein and albumins, the main groups of bioflavonoids and the indicator of the sugar acid index.
The dry matter content in the studied samples was 9.3-11.8 %, the content of free organic, ascorbic and hydroxycinnamic acids in the dry mass was 4.35-8.46 %, 359.8-487.8 mg/100 g and 1465.1-1956.0 mg/100 g, respectively. The content of soluble sugars was from 8.8 to 13.2 % with significant variant differences in the indicator of the sugar acid index, which varied in the range of 1.04-3.03. At the same time, the parameters of the accumulation of pectin substances were 3.884.54 %, the content of tannins - 1.23-1.92 %. The almost complete absence of anthocyanin pigments in the pea microgreens was found, the content of flavonols varied in the range of 1711.7-2189.2 mg/100 g, and catechins - 376.7-483.0 mg/100 g. At the same time, a high content of proteins and their valuable part - soluble proteins (albumins), which varied in mg/g of dry weight in the ranges of 412.3-443.4 and 8.38-18.0, was found in the microgreens.
The considerable width of the ranges of variation of the biochemical characteristics of the micro-green peas testified to their significant dependence on the duration of LED lighting, which was ambiguous. The least significant changes in the biochemical composition of peas microgreens relative to the control (12 hours duration) were detected at 10 and 14 hours of illumination duration, while the greatest - at 8 and especially at 16 hours duration. At the same time, the highest integral level of nutritional and vitamin value of products according to the totality of biochemical characteristics is set at 14 hours of illumination, while the minimum is at 8 hours.
References
2. Анисимов АА. Влияние узкополосного красно-синего освещения на пигментный комплекс некоторых декоративных растений. В: Перспективы развития АПК в работах молодых ученых: материалы региональной научно-практической конференции молодых учёных, Тюмень, 5 февраля 2014 г. Тюмень: [б. и.]; 2014. с. 8-12.
3. Коновалова ИО, Беркович ЮА, Ерохин АН, и др. Оптимизация светодиодной системы освещения витаминной космической оранжереи. Авиакосмическая и экологическая медицина. 2016;50(3):17-23.
4. Zhang X, Bian Z, Yuan X, Chen X. A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens. Trends in Food Science & Technology. 2020;99:1-15. DOI: 10.1016/j.tifs.2020.02.031.
5. Andrei Z, Vasilache V, Pintilie O, Stoleru T. Blue and Red LED Illumination Improves Growth and Bioactive Compounds Contents in Acyanic and Cyanic Ocimum basilicum L. microgreens. Molecules. 2017;22(2111):1-14. DOI: 10.3390/molecules22122111.
6. Brazaityte A, Vastakaite-Kairiene V, Virsile A. Changes in mineral element content of microgreens cultivated under different lighting conditions in a greenhouse. Acta Horticulturae. 2018;1227:507-516. DOI: 10.17660/ActaHortic.2018.1227.64.
7. Brazaityte A, et al. Comparison of LED and HPS illumination effects on cultivation of red pak choi microgreens under indoors and greenhouse conditions. Acta Horticulturae. 2020;1287:395-402.
8. Kong Y, Zheng Y. Growth and morphology responses to narrow-band blue light and its co action with low-level UVB or green light: A comparison with red light in four microgreen species. Environmental and Experimental Botany. 2020;178(104189):1-11. DOI: 10.1016/j.envexpbot.2020.104189.
9. Craver JK, Gerovac J, Lopez R, Kopsell DA. Light Intensity and Light quality from Sole-source Light-emitting Diodes Impact Phytochemical Concentrations within Brassica Microgreens. Journal of the American Society for Horticultural Science. 2017;142(1):3-12. DOI: 10.21273/JASHS03830-16.
10. Ермаков АИ, редактор. Методы биохимического исследования растений. Ленинград: [б. и.]; 1987.
11. Марсов НГ. Фитохимическое изучение и биологическая активность брусники, клюквы и черники [автореферат диссертации]. Пермь: [б. и.]; 2006. с. 99-101.
12. Кусакина МГ, Суворов ВИ, Чудинова ЛА. Большой практикум «Биохимия». Лабораторные работы. Пермь: [б. и.]; 2012.
13. Swain T, Hillis W. The phenolic constituents of Prunus Domenstica. 1. The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture. 1959;10(1):63-68. DOI: 10.1002/JSFA.2740100110.
14. Скорикова ЮГ, Шафтан ЭА. Методика определения антоцианов в плодах и ягодах. В: Труды 3 Всесоюзного семинара по биологически активным (лечебным) веществам плодов и ягод. Свердловск: [б. и.]; 1968. с. 451-461.
15. Андреева ВЮ и др. Методика определения антоцианов в плодах аронии черноплодной. Фармация. 2013;3:19-21.
16. Определение содержания дубильных веществ в лекарственном растительном сырье. В: Государственная фармакопея СССР. Москва: Медицина; 1987. Выпуск 1. с. 286-287.
17. Петров КП. Метод формольного титрования со смешанными индикаторами. Киев: Вища школа; 1978. с. 16-18.
18. Bradford MM. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry. 1976;8:248-254.
19. Рупасова ЖА, Решетников ВН, Яковлев АП. Патент BY 17648. Способ ранжирования таксонов растения. Опубл. 08.07.2013.