Assessment of the genotoxic effect of X-ray radiation on earthworms Lumbricus terrestris living in soils of Polesie radiation-ecological reserve

  • Alena M. Kadukova nstitute of Radiobiology of the National Academy of Sciences of Belarus
  • Nataliya N. Veyalkina Institute of Radiobiology of the National Academy of Sciences of Belarus
  • Sergey V. Goncharov Institute of Radiobiology of the National Academy of Sciences of Belarus
  • Игорь Анатольевич Чешик Institute of Radiobiology of the National Academy of Sciences of Belarus

Abstract

Earthworms are reference animal species for assessing the effects of radiation exposure on biota.

The object of the study was earthworms of the species Lumbricus terrestris, it belongs to the soil group and live in the Polesie State Radiation-Ecological Reserve (PSRER) under conditions of chronic exposure to the radiation factor.

The purpose of the work is to assess the level of damage to the genetic apparatus: the frequency of micronuclei and binucleate cells, as well as the spontaneous level and rate of repair of induced DNA damage after exposure to acute X-ray radiation at a dose of 4 Gy in coelomocytes of earthworms from populations inhabiting soils of areas with technogenically increased content of radionuclides.

The calculated values of the absorbed dose rate from 137Cs for earthworms of the species L. terrestris living in the soil at the study sites in the PSRER 35 years after the Chernobyl accident, in almost all cases exceed the value of the most conservative existing safe level of radiation exposure on biota - 10 μGy/h, but do not reach the permissible radiation exposure level of 10 mGy/day established for earthworms in ICRP Publications 108.

It was established that the spontaneous level of DNA damage (% DNA tail) in L. terrestris earthworms living in areas with different levels of radioactive contamination by 137Cs did not differ and amounted to 12.04 ± 1.32 (control area) and 14.36 ± 2.52 (PSRER), respectively.

Exposure to acute X-ray radiation at a dose of 4 Gy led after 48 hours to an increase in the number of binucleate cells in coelomocyte populations; it was significantly higher in earthworms living in the soil of areas with increased levels of radionuclide contamination.

The level of DNA damage in earthworms living in soils of areas with increased background radiation, 24 hours after exposure to acute X-ray irradiation at a dose of 4 Gy, decreased by 12.98% compared to the corresponding value after 0.1 hour, and in earthworms of the group comparison (Gomel region) - only by 5.88% compared to the corresponding value.

The adaptive response in earthworms of the species L. terrestris have inhabited for a long time in the soils of the PSRER territories, manifested itself in the form of an increased rate of DNA repair and an increase in cell proliferation after acute X-ray irradiation at a dose of 4 Gy.

Author Biographies

Alena M. Kadukova, nstitute of Radiobiology of the National Academy of Sciences of Belarus

senior researcher at the laboratory of stability of biological systems.

Nataliya N. Veyalkina, Institute of Radiobiology of the National Academy of Sciences of Belarus

PhD (biology); leading researcher at the laboratory of stability of biological systems.

Sergey V. Goncharov, Institute of Radiobiology of the National Academy of Sciences of Belarus

researcher of the laboratory at stability of biological systems.

Игорь Анатольевич Чешик, Institute of Radiobiology of the National Academy of Sciences of Belarus

PhD (medicine), docent; director.

References

  1. ICRP. A Framework for Assessing the Impact of Ionising Radiation on Non- Human Species. Publication 91. Annals of the ICRP. 2003;33(3):201–270.
  2. Kazakov SV, Utkin SS. Podkhody i printsipy radiatsionnoy zashchity vodnykh ob'yektov [Approaches and principles of radiation protection of water objects]. Moscow: Nauka; 2008. p. 318. Russian.
  3. ICRP. Recommendations of the International Commission on Radiological Protection. Publication 103. Annals of the ICRP. 2007;37(2–4):1–332. DOI: 10.1016/j.icrp.2007.10.003.
  4. Smith JT, Beresford NA. Chernobyl. Catastrophe and Consequences. Berlin – New York: Springer, Chichester; 2005. 310 р.
  5. Geras’kin SA, Fesenko SV, Volkova Pyu, et al. Chto my uznali o biologicheskikh effektakh oblucheniya v khode 35-letnego analiza posledstviy avarii na Chernobyl’skoy AES? [What have we learned about the biological effects of radiation from a 35-year analysis of the consequences of the Chernobyl NPP accident?]. Radiation Biology. Radioecology. 2021(3):234–260. DOI: 10.31857/ S0869803121030061. Russian.
  6. Møller AP, Mousseau T A. Reduced abundance of insects and spiders linked to radiation at Chernobyl 20 years after the accident. Biology letters. 2009;5(3):356–359. DOI:org/10.1098/rsbl.2008.0778.
  7. Hiyama A, Nohara C, Kinjo S, et al. The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly. Scientific Reports. 2012(2):1–10.
  8. Bonzom JM, Hättenschwiler S, Lecomte-Pradines C, et al. Effects of radionuclide contamination on leaf litter decomposition in the Chernobyl exclusion zone. Science of the Total Environment. 2016;15:596–603. DOI: 10.1016/j.scitotenv.2016.04.006.
  9. Deryabina TG, Kuchmel SV, Nagorskaya LL, et al. Long-term census data reveal abundant wildlife populations at Chernobyl. Current Biology. 2015;25:824–826. DOI: 10.1016/j.cub.2015.08.017.
  10. Beresford N, Horemans N, Copplestone D, et al. Towards solving a scientific controversy – the effects of ionizing radiation on the environment. Journal of Environmental Radioactivity. 2020;211:106033. DOI.org/10.1016/j. jenvrad2019.106033.
  11. Real A, Sundell-Bergman S, Knowles JF, et al. Effects of ionizing radiation on plants, fish and mammals: relevant data for environmental radiation protection. Journal of Radiological Protection. 2004;24(4А):123–137. DOI:10.1088/0952-4746/24/4a/008.
  12. Garnier-Laplace J, Della-Vedova C, Andersson P, et al. A multi-criteria weight of evidence approach for deriving ecological benchmarks for radioactive substances. Journal of Radiological Protection. 2010;30(2):215–233. DOI 10.1088/0952-4746/30/2/S02.
  13. Møller AP, Mousseau TA. Are organisms adapting to ionizing radiation at Chernobyl? Trends in Ecology & Evolution. 2016;31(4):281–289. DOI: 10.1016/j.tree.2016.01.005.
  14. Larsson CM. An overview of the ERICA integrated approach to the assessment and management of environmental risks from ionizing contaminants. Journal of Environmental Radioactivity. 2008;99(9):1364–1370. DOI: 10.1016/j.jenvrad.2007.11.019.
  15. ICRP. Environmental Protection: Transfer Parameters for Reference Animals and Plants. Publication 114. Annals of the ICRP. 2009;39(6):1–111. DOI: 10.1016/j.icrp.2011.08.009.
  16. Krivolutskiy DA. Pochvennaya fauna kak bioindikator radioaktivnykh zagryazneniy. V: Pochvennaya fauna i pochvennoye plodorodiye [Soil fauna as a bioindicator of radioactive contamination. In: Soil fauna and soil fertility]. Moscow: [publisher unknown]; 1987). p. 241–244. Russian.
  17. Gong P, Perkins EJ. Earthworm toxicogenomics: A renewed genome-wide quest for novel biomarkers and mechanistic insights. Applied Soil Ecology. 2016;104):12–24. DOI: 10.1016/j.apsoil.2015.11.005.
  18. Lapuente J, Lourenço J, Mendo SA, et al. The Comet Assay and its applications in the field of ecotoxicology: a mature tool that continues to expand its perspectives. Frontiers in Genetics. 2015;6:1–20. DOI: 10.3389/fgene.2015.00180.
  19. Šrut M. Environmental Epigenetics in Soil Ecosystems: Earthworms as Model Organisms. Toxics. 2022;10(7):1–11. DOI: 10.3390/toxics10070406.
  20. Mazur-Pączka A, Pączka G, Garczynska M. Effectiveness of Lumbricidae extracting with an environmentally friendly method. Journal of Ecological Engineering. 2020;21(5):114–119. DOI:10.12911/22998993/122237.
  21. Singh J, Singh S, Vig AP. Extraction of earthworm from soil by different sampling method: a review. Environment Development and Sustainability. 2015;18:1521–1539. DOI: 10.1007/s10668-015-9703-5.
  22. Maksimova SL, Gurina NV. Dozhdevyye chervi (Lumbricidae) fauny Belarusi: spravochnik-opredelitel [Earthworms (Lumbricidae) Fauna of Belarus: a reference book]. Minsk: Belaruskaja navuka; 2014. 56 p. Russian.
  23. Zashchita okruzhayushchey sredy: kontseptsiya i ispol’zovaniye referentnykh zhivotnykh I rasteniy. Publikatsiya MKRZ 108 [Environmental protection: concept and use of reference animals and plants. Publication MKRZ 108]. Moscow: Akadem-Print; 2013. 216 p. Russian.
  24. Niita K, et al. Recent Developments of the PHITS code. Progress in Nuclear Science and Technology. 2011;1:1–6. DOI: 10.15669/ pnst.1.368.
  25. Taranenko V, Pröhl G, Gómez-Ros J. Absorbed dose rate conversion coefficients for reference terrestrial biota for external photon and internal exposures. Journal of radiological protection. 2004:24:A35–A62. DOI:10.1088/0952-4746/24/4A/003.
  26. Ulanovsky A, Prohl G. Dosimetry for reference animals and plants: current state and prospects. Annals of the ICRP. 2012;41(3– 4):218–232. DOI: 10.1016/j.icrp.2012.06.034.
  27. Reinecke SA, Reinecke AJ. The comet assay as biomarker of heavy metal genotoxicity in earthworms. Archives of Environmental Contamination Toxicology. 2004;46(2):208–215. DOI: 10.1007/s00244-003-2253-0.
  28. Eyambe SG, Goven AJ, Fitzpatrick LC, et al. A noninvasive technique for sequential collection of earthworm (Lumbricus terrestris) leukocytes during sub chronic immunotoxicity studies. Laboratory Animals. 1991;25(1):61–67. DOI: 10.1258/002367791780808095.
  29. Tice RR, Agurell E, Anderson D, et al. Single cell gel / comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis. 2000;35(3):206–221. DOI: 10.1002/(sici)1098-2280(2000)35:3<206: aidem8>3.0.co;2-j.
  30. Sycheva LP. Biologicheskoye znacheniye, kriterii opredeleniya i predely var’irovaniya polnogo spektra kariologicheskikh pokazateley pri otsenke tsitogeneticheskogo statusa cheloveka [Biological significance, criteria for determining and the limits of variation of the full spectrum of cariological indicators in the assessment of the cytogenetic status of a person]. Medical genetics. 2007;6(11):3–11. Russian.
  31. Edwards CA, Bohlen PJ. Biology and Ecology of Earthworms. London: Chapman and Hall; 1996. 426 p.
  32. Maksimova SL, Mukhin YuF. Vidovoy sostav dozhdevykh chervey i ikh biotopicheskoye raspredeleniye na territorii Belarusi [The species composition of the earthworms and their biotopic distribution in Belarus]. Bulletin of the National Academy of Sciences of Belarus. Biological sciences. 2016(1):56–60. Russian.
  33. Sayles RA. Investigation of earthworms from the Chernobyl NPP Exclusion Zone and Fukushima NPP 100 km Area: uptake of 137Cs and comparison of ecological groups. [Place unknown]: Master’s Thesis; 2019. 78 p.
  34. Beresford NA, Scott EM, Copplestone D. Field effects studies in the Chernobyl Exclusion Zone: Lessons to be learnt. Journal of Environmental Radioactivity. 2020;211:1–10. DOI: 10.1016/j.jenvrad.2019.01.005.
  35. Sazykina TG, Kryshev AI, Kryshev II. Modelirovaniye radioekologicheskikh protsessov v okruzhayushchey srede [Modeling of radioecological processes in the environment]. Moscow: LLC «MASKA»; 2022. 638 p. Russian.
  36. Hasegawa M, Ito MT, Kaneko S, et al. Radiocesium concentrations in epigeic earthworms at various distances from the Fukushima Nuclear Power Plant 6 months after the 2011 accident. Journal of Environmental Radioactivity. 2013;126:8–13. DOI: 10.1016/j. jenvrad.2013.06.006.
  37. Fesenko SV, Alexakhin RM, Geras’kin SA, et al. Comparative radiation impact on biota and man in the area affected by the accident at the Chernobyl nuclear power plan. Journal of Environmental Radioactivity. 2005;80):1–25. DOI: 10.1016/j.jenvrad.2004.08.011.
  38. IAEA Safety Standards. Safety Assessment for Facilities and Activities. General Safety Requirements. No. GSR Part 4, 93 UNSCEAR 1996. Vienna: International Atomic Energy Agency; 2009. 40 p.
  39. Effects of radiation on the environment. In: United Nations Scientific Committee on the Effects of Atomic Radiation, Report to the General Assembly. New York: [publisher unknown]; 1996. 82 p.
  40. ICRP. Environmental protection: the concept and use of reference animals and plants. Publication 108. Annals of the ICRP. 2009;4–6:1–242.
  41. Copplestone D, Johnson MS, Jones SR, et al. Radionuclide behaviour and transport in a coniferous woodland ecosystem: vegetation, invertebrates and wood mice, Apodemus sylvaticus. Science of the Total Environment. 1999;239:95–109. DOI: 10.1016/ s0048-9697(99)00294-6.
  42. Tanaka S, Takahashi T, Adati Т, et al. Radioactive cesium contamination of arthropods and earthworms after the Fukushima Dai-ichi Nuclear Power Plant Accident. Low-Dose Radiation Effects on Animals and Ecosystems. 2022. p. 43–52. DOI.org/10.1007/978-981-13-8218-5_4.
  43. Geras’kin SA, Fesenko SV, Alexakhin RM. Effects of non-human species irradiation after the Chernobyl NPP accident. Environment International. 2008;34:880–897. DOI: 10.1016/j.envint.2007.12.012.
  44. Andersson P, Garnier-Laplace J, Beresford NA, et al. Protection of the environment from ionising radiation in a regulatory context (PROTECT): proposed numerical benchmark values. Journal of Environmental Radioactivity. 2009;100:1100–1108. DOI: 10.1016/j. jenvrad.2009.05.010.
  45. Zaitsev AS, Nakamori T, Gongalsky К, et al. Ionising radiation effects on soil biota: Application of lessons learned from Chernobyl accident for radioecological monitoring. Pedobiologia. 2014;57(1):5–14. DOI: 10.1016/j.pedobi.2013.09.005.
  46. Krivolutzkii DA, Pokarzhevskii AD. Effects of radioactive fallout on soil animal populations in the 30 km zone of the Chernobyl atomic power station. Science of the Total Environment. 1992;112(1):69–77. DOI: 10.1016/0048-9697(92)90239-o.
  47. Krivolutskiy DA. Dinamika bioraznoobraziya ekosistem v usloviyakh radioaktivnogo zagryazneniya [The dynamics of ecosystem biodiversity in conditions of radioactive pollution]. Reports of the Russian Academy of Sciences. 1996(4):567–569. Russian.
  48. Sowmithra K, Harini ВР, Shetty JN, et al. Effects of acute gamma radiation on the reproductive ability of the earthworm Eisenia fetida. Journal of Environmental Radioactivity. 2015;140:11–15. DOI: 10.1016/j.jenvrad.2014.10.010.
  49. Hertel-Aas T, Oughton DH, Jaworska A, et al. Effects of chronic gamma irradiation on reproduction in the earthworm Eisenia fetida (Oligochaeta). Radiation Research. 2007;168(5):515–526. DOI: 10.1667/RR1012.1.
  50. Kalayev VN, Nechayeva MS, Kalayeva YeA. Mikroyadernyy test bukkal’nogo epiteliya rotovoy polosti cheloveka: monografiya [Micronucleus test of the buccal epithelium of the human oral cavity: Monograph]. Voronezh: Voronezh State University; 2016. 136 p. Russian.
  51. Grigorkina YeB. Ekologicheskaya spetsializatsiya melkikh mlekopitayushchikh: reaktsii na radiatsionnoye vozdeystviye i rol’ v razvitii radioadaptatsii [Environmental specialization of small mammals: reactions to the radiation effect and role in the development of radioadaptation]. Bulletin of the Irkutsk State Agricultural Academy. 2017;83:25–30. Russian.
  52. Kaneva (Rybak) AV, Belykh YeS, Maystrenko TA, et al. Uroven’ povrezhdeniy i skorost’ reparatsii DNK v kletkakh dozhdevykh chervey iz populyatsiy, dlitel’noye vremya obitayushchikh v pochve s povyshennym soderzhaniyem radionuklidov [The level of damage and the rate of DNA reparation in the cells of earthworms from populations that live for a long time in the soil with a high content of radionuclide]. Radiation biology. Radioecology. 2015(1):24–34. DOI: 10.7868/S0869803115010051. Russian.
Published
2024-01-05
Keywords: еarthworms, coelomocytes, dose rate, DNA-comet assay, micronuclei, binucleate cells, radio adaptation
Supporting Agencies The study was carried out as part of research work 6 «Analysis of adaptation processes in animal populations of different systematic groups to the chronic effects of increased levels of ionizing radiation» of task 3.07.1 of subprogram 3 «Interdisciplinary research and new emerging technologies» of the State Scientific Research Program «Convergence 2025» for 2021–2025 (No. 20210298).
How to Cite
Kadukova, A., Veyalkina, N., Goncharov, S., & Cheshik, I. (2024). Assessment of the genotoxic effect of X-ray radiation on earthworms Lumbricus terrestris living in soils of Polesie radiation-ecological reserve. Journal of the Belarusian State University. Ecology, 4, 41-52. Retrieved from https://journals.bsu.by/index.php/ecology/article/view/5832
Section
Radioecology and Radiobiology, Radiation Safety