Prospects for using the phytoremediation method for deactivation of territories contaminated with radionuclides

  • Mikalai M. Tsybulka
  • Aleh I. Rodzkin

Abstract

Soil contamination with radionuclides, the main cause of which is the accident at the Chernobyl nuclear power plant, is one of the most dangerous negative environment impact factors. Phytoremediation including cultivation of «energy» crops is an effective method for decontamination of territories contaminated with radionuclides. The advantage of this approach is the possibility of using biomass as a renewable source of green energy in combination with the gradual reclamation of polluted soils. A promising crop for the purposes of phytoremediation is willow, the fast-growing species of which provide a high yield of biomass from a production plantation. A problematic issue is the safe use of willow biomass. The assessment of the conditions for the transition of radioactive cesium into willow biomass was carried out on the territories of Belarus contaminated after the Chernobyl accident. Experiments have shown that the predicted content of 137Cs in the wood of a fast-growing willow is significantly lower than the level allowed for wood fuel according to the standards established for the Republic of Belarus (740 Bq/kg). Even at the level of soil pollution at which they are removed from agricultural use (40 Ci/km2), the content of 137Cs in wood will be from 35 to 120 Bq/kg (depending on the dose of potash fertilizers).

References

  1. Ljucko AM, Rolevich IV, Ternov VI. Chernobyl’: shans vyzhit’ [Chernobyl’: chance for surviving]. Minsk: Polymja; 1996. Russian.
  2. Cybul’ko, N. N. Radionuclide pollution of the Belarus area: dynamic and modern situation. Vestnik. BGU. Seria 2, Himija. Biologija. Geografija. 2012;1:80–84. Russian.
  3. Chernuha GA., Lazarevich NV, Lalomova TV. Radiacionnaya bezopasnost [Radioactive safety: Textbook. Committee of Chernobyl under the Council of Ministry of Belarus]. Gorki: Belarus. State agricultural Academy. 2005. Russian.
  4. Djelic G, Krstic D, Stajic J, et al. Transfer factors of natural radionuclides and 137Cs from soil to plants used in traditional medicine in central Serbia. Journal of Environmental Radioactivity 2016;158–159:81–88.
  5. Minjuk, ZP, Sharovarov GA. The modern methods of rehabilitation of polluted areas. Vesnіk MDU іmja A. A. Kuljashova. 2008;2, 3(30):173–178.. Russian.
  6. Aleksandrova ZhN. Methodology of assessment of perspective for phytoremediation of radionuclide polluted soils. Vestnik NJaC RK2018;4:79–82. Russian.
  7. Mitaev MI, Dzhantaeva MB. Phytoremediation of pollutes soil on contaminated areas (example of Grodno). Izvestija chechenskogo gosudarstvennogo universiteta, 2018;3(11):64–68. Russian.
  8. Demin AV, Rybal’chenko IV, Mil’kina IV. Technology of sustainable development of areas: phytoremediation as innovative method for sanitation of depressive areas. Vestnik Rossijskogo universiteta druzhby narodov. Serija: Gosudarstvennoe i municipal’noe upravlenie. 2022;9(2).124–136. https://doi.org/10.22363/2312-8313-2022-9-2-124-136. Russian.
  9. Kireeva NA, Grigoriadi AS, Bagautdinov F Ja. Phytoremediation as method for cleaning of soils polluted by heavy metals. Teoreticheskaja i prikladnaja jekologija. 2011;3:4–9. Russian.
  10. Bekuzarova SA, Hanieva IM, Azubekov LH. Phytoremediation of toxic soils. Uspehi sovremennogo estestvoznanija. 2018;12:345–352. Russian.
  11. Gurina IV, et al. Agroekologicheskoe obosnovanie vedeniya sel’skohozyajstvennogo proizvodstva na melioriruemyh dlitel’no ispol’zuemyh, narushennyh i zagryaznennyh zemlyah: monografiya. [Agroecological base for agricultural production of drained, degraded, and polluted soils: monograph]. Rjazan’: FGBOU VPO RGATU; 2014. Russian.
  12. Muratova AJu, et al. Physiology-biochemical reaction Miscanthus × giganteus for pollution of soils by heavy metals. Jekobioteh. 2019;2:(4):482–493. Russian.
  13. Rodzkin A, Kundas S, Charnenak Y. The assessment of cost of biomass from post-mining peaty lands for pellet fabrication. Environmental and Climate Technologies. 2018;22(1):118–131.
  14. Kundas S, Wichtman W, Rodzkin A. Use of biomass from wet peatland for energy purpose. International and renewable energy sources as alternative primary energy sources in the region: 8 International science conference. Lviv: [publisher unknown]; 2015. p. 77–81.
  15. Dimitriou I, Aronsson P. Willows for energy and phytoremediation in Sweden. Unasylva. 2005;56(221):47–50.
  16. Tuck G, et al. The potential distribution of bioenergy crops in Europe under present and future climate. Biomass and Bioenergy. 2006;30(3):183–197.
  17. Stern, WB. Stroh als Quelle erneuerbarer Energie. Swiss Bulletin für angewandte Geologie. 2010;15(1):95–103.
  18. Mola-Yudego B, et al. Reviewing wood biomass potentials for energy in Europe: the role of forests and fast-growing plantations. Biofuels. 2017;8(4):401–410.
  19. Bogdevich IM, i dr. Zemlya Belarusi. 2001 [Soil of Belarus. 2001]. Minsk: BELNICZEM; 2002. Russian.
  20. Dospehov, BA. Metodika polevogo opyta (s osnovami statisticheskoj obrabotki rezul’tatov issledovanij) [Mеhodology of the field experiment (with statistical methods of results assessment)]. Moscow: Agropromizdat; 1985. Russian.
  21. Annenkov BN, Judinceva EV. Osnovy sel’skohozyajstvennoj radioekologii. [The base of agricultural radioecology]. Moscow: Agropromizdat; 1991. Russian.
  22. Oljača R, Rodzkin O, Krstić B. Fiziologija vrba = Willow physiology. Laktaši: University Banja Luka; 2017.
  23. Rodzkin AI, Ivanykovich VA, Pronko SK. Willow wood production on radionuclide polluted areas. Matica Srpska = Journal for Natural Sciences. 2010;119:105–113.
  24. Rodzkin A, Khroustalev B, Kundas S. Potential of Energy Willow Plantations for Biological Reclamation of Soils Polluted by 137Cs and Heavy Metals, and for Control of Nutrients Leaking into Water Systems. Environmental and Climate Technologies. 2019:23(3):43–56.
  25. Rosen K, von Fircks Y, Vinichuk M, Sennerby-Forsse L. Accumulation of 137Cs after potassium fertilization in plant organs of Salix viminalis L. and in combusted ash. Biomass and bioenergy. 2011;35:2765–2772.
  26. Rosen K, von Fircks Y. Uptake and distribution of 137Cs and 90Sr in Salix viminalis plants. Journal of Environmental Radioactivity. 2002;63:1–14.
  27. Rodzkin A, Orlovich S, Krstich B. The perspective of application of ash from willow wood as a mineral fertilizer. In: Safe food. Processing of XVIII international eco-conference, 1–4 October 2014. Novi Sad (Serbia): [publisher unknown]; 2014. p. 211–218.
Published
2023-11-03
Keywords: phytoremediation, radionuclides, energy crops, biofuels
How to Cite
Tsybulka, M., & Rodzkin, A. (2023). Prospects for using the phytoremediation method for deactivation of territories contaminated with radionuclides. Journal of the Belarusian State University. Ecology, 1. Retrieved from https://journals.bsu.by/index.php/ecology/article/view/5874
Section
Radioecology and Radiobiology, Radiation Safety