Metabolic features of dendritic cell subpopulations

  • Andrey E. Goncharov
  • Anna S. Talankina

Abstract

Metabolism is an important mechanism that ensures the vital activity of cells and is an integral function of all living organisms. Recent studies have uncovered unique aspects of metabolism in dendritic cells, professional antigen-presenting cells.
It was previously believed that DCs were relatively passive in metabolism, however, recent studies demonstrate their complex metabolic activity, including energy metabolism and the synthesis of biochemical molecules. Metabolic processes in dendritic cells have a direct impact on their functional properties and interaction with other cells. They also influence immune function and antitumor response, as dendritic cells play an important role in antigen presentation and immune system activation. Today, considerable attention is paid to the role of dendritic cells in the context of oncological diseases, which represent a group of the most dangerous pathologies, among which malignant neoplasms stand out for their aggressiveness and ability to evade immune control. Features of dendritic cell metabolism in neoplasms include glycolysis activation, increased amino acid requirements, and altered metabolic pathways. The study of the metabolic features of DC provides an opportunity to develop strategies for metabolic manipulation to modulate the immune and antitumor response. In addition, new prospects are opening up for the development of innovative immunotherapeutic strategies aimed at improving the effectiveness of cancer treatment and improving patient survival. This is an important area of research that could lead to the development of new therapeutic approaches and personalized cancer treatment. This article reviews the latest research on the characteristics of the metabolism of various subpopulations of dendritic cells in the context of oncological diseases and discusses the impact of metabolic changes on immune responses and possible strategies for using this information in the development of new treatments for neoplasms.

References

  1. Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations. International Review of Cell and Molecular Biology. 2019;348:1–68.
  2. Castell-Rodríguez A, Piñón-Zárate G, Herrera-Enríquez M, Jarquín-Yáñez K, Medina-Solares I, Castell-Rodríguez A, et al. Dendritic Cells: Location, Function, and Clinical Implications. Biology of Myelomonocytic Cells. 2017;21–50.
  3. Brombacher EC, Patente TA, Quik M, Everts B. Characterization of Dendritic Cell Metabolism by Flow Cytometry. Methods in molecular biology (Clifton, N. J.). 2023;2618:219–37.
  4. Rezinciuc S, Bezavada L, Bahadoran A, Duan S, Wang R, Lopez-Ferrer D, et al. Dynamic metabolic reprogramming in dendritic cells: An early response to influenza infection that is essential for effector function. PLOS Pathogens. 2020;16(10):e1008957.
  5. Ciaramella A, Bizzoni F, Salani F, Vanni D, Spalletta G, Sanarico N, et al. Increased pro-inflammatory response by dendritic cells from patients with Alzheimer’s disease. Journal of Alzheimer’s Disease. 2010;19(2):559–72.
  6. Hernández SS, Jakobsen MR, Bak RO. Plasmacytoid Dendritic Cells as a Novel Cell-Based Cancer Immunotherapy. International Journal of Molecular Sciences. 2022;23(19):11397.
  7. Gogolak P, Rethi B, Szatmari I, Lanyi A, Dezso B, Nagy L, et al. Differentiation of CD1a- and CD1a+ monocyte-derived dendritic cells is biased by lipid environment and PPARgamma. Blood. 2007;109(2):643–52.
  8. Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM. Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Frontiers in Immunology.2019;9(3176).
  9. Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology. 2018;154(1):3–20.
  10. Böttcher JP, Sousa CR. The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity. Trends Cancer. 2018;4(11):784–92.
  11. Sasaki I, Kato T, Hemmi H, Fukuda-Ohta Y, Wakaki-Nishiyama N, Yamamoto A, et al. Conventional Type 1 Dendritic Cells in Intestinal Immune Homeostasis. Frontiers in Immunology. 2022;13.
  12. Sichien D, Lambrecht BN, Guilliams M, Scott CL. Development of conventional dendritic cells: from common bone marrow progenitors to multiple subsets in peripheral tissues. Mucosal Immunology. 2017;10(4):831–44.
  13. Saito Y, Komori S, Kotani T, Murata Y, Matozaki T. The Role of Type-2 Conventional Dendritic Cells in the Regulation of Tumor Immunity. Cancers. 2022;14(8):1976.
  14. Colonna M, Trinchieri G, Liu YJ. Plasmacytoid dendritic cells in immunity. Nature Immunology. 2004;5(12):1219–26.
  15. Ye Y, Gaugler B, Mohty M, Malard F. Plasmacytoid dendritic cell biology and its role in immune‐mediated diseases. Clinical & Translational Immunology. 2020;9(5):e1139.
  16. Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356(6335):eaah4573.
  17. Qu C, Brinck-Jensen NS, Zang M, Chen K. Monocyte-derived dendritic cells: targets as potent antigen-presenting cells for the design of vaccines against infectious diseases. International Journal of Infectious Diseases. 2014;19:1–5.
  18. Shin KS, Jeon I, Kim BS, Kim IK, Park YJ, Koh CH, et al. Monocyte-Derived Dendritic Cells Dictate the Memory Differentiation of CD8+ T Cells During Acute Infection. Frontiers in Immunology. 2019;10(1887).
  19. Rhodes JW, Botting RA, Bertram KM, Vine EE, Rana H, Baharlou H, et al. Human anogenital monocyte-derived dendritic cells and langerin+cDC2 are major HIV target cells. Nature Communications. 2021;12(1):2147.
  20. Lee YS, Radford KJ. The role of dendritic cells in cancer. International Review of Cell and Molecular Biology. 2019;348:123–78.
  21. Del Prete A, Salvi V, Soriani A, Laffranchi M, Sozio F, Bosisio D, et al. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cellular & Molecular Immunology. 2023;20:432-447.
  22. Pelgrom LR, van der Ham AJ, Everts B. Analysis of TLR-Induced Metabolic Changes in Dendritic Cells Using the Seahorse XF(e)96 Extracellular Flux Analyzer. Methods in molecular biology (Clifton, N. J.). 2016;1390:273–85.
  23. Møller SH, Wang L, Ho PC. Metabolic programming in dendritic cells tailors immune responses and homeostasis. Cellular & Molecular Immunology. 2022;19(3):370–83.
  24. Giovanelli P, Sandoval TA, Cubillos-Ruiz JR. Dendritic Cell Metabolism and Function in Tumors. Trends in Immunology. 2019;40(8):699–718.
  25. Currivan E, Finlay D, Moreira D. Dendritic cells metabolism: a strategic path to improve antitumoral DC vaccination. Clinical & Experimental Immunology. 2022;208(2):193–201.
  26. Cubillos-Ruiz JR, Silberman PC, Rutkowski MR, Chopra S, Perales-Puchalt A, Song M, et al. ER Stress Sensor XBP1 Controls Anti-tumor Immunity by Disrupting Dendritic Cell Homeostasis. Cellular. 2015;161(7):1527–38.
  27. Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S, Tyurin VA, et al. Lipid accumulation and dendritic cell dysfunction in cancer. Nature Medicine. 2010;16(8):880–6.
  28. Basit F, van Oorschot T, van Buggenum J, Derks RJE, Kostidis S, Giera M, et al. Metabolomic and lipidomic signatures associated with activation of human cDC1 (BDCA3+/CD141+) dendritic cells. Immunology. 2022;165(1):99–109.
  29. Wculek SK, Khouili SC, Priego E, Heras-Murillo I, Sancho D. Metabolic Control of Dendritic Cell Functions: Digesting Information. Frontiers in Immunology. 2019;10:775.
  30. Everts B, Amiel E, Huang SCC, Smith AM, Chang CH, Lam WY, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nature Immunology. 2014;15(4):323–32.
  31. Zheng Z, Ma H, Zhang X, Tu F, Wang X, Ha T, et al. Enhanced Glycolytic Metabolism Contributes to Cardiac Dysfunction in Polymicrobial Sepsis. The Journal of Infectious Diseases. 2017;215(9):1396–406.
  32. Song X, Si Q, Qi R, Liu W, Li M, Guo M, et al. Indoleamine 2,3-Dioxygenase 1: A Promising Therapeutic Target in Malignant Tumor. Frontiers in Immunology. 2021;12:800630.
  33. Luby A, Alves-Guerra MC. Targeting Metabolism to Control Immune Responses in Cancer and Improve Checkpoint Blockade Immunotherapy. Cancers. 2021;13(23):5912.
  34. Lawless SJ, Kedia-Mehta N, Walls JF, McGarrigle R, Convery O, Sinclair LV, et al. Glucose represses dendritic cell-induced T cell responses. Nature Communications. 2017;8(1):15620.
  35. Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. Journal of Experimental Medicine. 2016;213(3):337–54.
  36. Adamik J, Munson PV, Hartmann FJ, Combes AJ, Pierre P, Krummel MF, et al. Distinct metabolic states guide maturation of inflammatory and tolerogenic dendritic cells. Nature Communications. 2022;13(1):5184.
  37. Rothenfluh E, Schweizer A, Nagy L. Opening Wedge Osteotomy for Distal Radius Malunion: Dorsal or Palmar Approach. Journal of Wrist Surgery. 2013;2(1):49–54.
  38. Palsson-McDermott EM, Dyck L, Zasłona Z, Menon D, McGettrick AF, Mills KHG, et al. Pyruvate Kinase M2 Is Required for the Expression of the Immune Checkpoint PD-L1 in Immune Cells and Tumors. Frontiers in Immunology. 2017;8:1300.
  39. Arts RJW, Novakovic B, Ter Horst R, Carvalho A, Bekkering S, Lachmandas E, et al. Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity. Cellular Metabolism. 2016;24(6):807–19.
  40. Chen JT, Chang WC. Effects of tissue culture conditions and explant characteristics on direct somatic embryogenesis in Oncidium `Gower Ramsey’. Plant Cell, Tissue and Organ Culture. 2002;69(1):41–4.
  41. Zheng K, Wang C, Cheng YQ, Yue Y, Han X, Zhang Z, et al. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nature Communications. 2010;1(1):24.
  42. Segura E, Touzot M, Bohineust A, Cappuccio A, Chiocchia G, Hosmalin A, et al. Human Inflammatory Dendritic Cells Induce Th17 Cell Differentiation. Immunity. 2013;38(2):336–48.
  43. Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nature Communications. 2020;11:102.
  44. Kelly B, O’Neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cellular Research. 2015;25(7):771–84.
  45. Todisco S, Convertini P, Iacobazzi V, Infantino V. TCA Cycle Rewiring as Emerging Metabolic Signature of Hepatocellular Carcinoma. Cancers. 2019;12(1):68.
  46. Liu S, Yang J, Wu Z. The Regulatory Role of α-Ketoglutarate Metabolism in Macrophages. Mediators of Inflammation. 2021;2021:5577577.
  47. Choi I, Son H, Baek JH. Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses. Life. 2021;11(1):69.
  48. Schönfeld P, Więckowski MR, Lebiedzińska M, Wojtczak L. Mitochondrial fatty acid oxidation and oxidative stress: Lack of reverse electron transfer-associated production of reactive oxygen species. Biochimica et Biophysica Acta (BBA) – Bioenergetics.2010;1797(6):929–38.
  49. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, et al. Cutting Edge: Distinct Glycolytic and Lipid Oxidative Metabolic Programs Are Essential for Effector and Regulatory CD4+ T Cell Subsets. Journal of immunology (Baltimore, Md.:1950). 2011;186(6):3299–303.
  50. Almeida L, Lochner M, Berod L, Sparwasser T. Metabolic pathways in T cell activation and lineage differentiation. Seminars in Immunology. 2016;28(5):514–24.
  51. Peng X, He Y, Huang J, Tao Y, Liu S. Metabolism of Dendritic Cells in Tumor Microenvironment: For Immunotherapy. Frontiers in Immunology. 2021;12:613492.
  52. Duraj T, Carrión-Navarro J, Seyfried TN, García-Romero N, Ayuso-Sacido A. Metabolic therapy and bioenergetic analysis: The missing piece of the puzzle. Molecular Metabolism. 2021;54:101389.
  53. Basit F, de Vries IJM. Dendritic Cells Require PINK1-Mediated Phosphorylation of BCKDE1α to Promote Fatty Acid Oxidation for Immune Function. Frontiers in Immunology. 2019;10:2386.
  54. Zhang Q, Wang H, Mao C, Sun M, Dominah G, Chen L, et al. Fatty acid oxidation contributes to IL-1β secretion in M2 macrophages and promotes macrophage-mediated tumor cell migration. Molecular Immunology. 2018;94:27–35.
  55. Kandasamy P, Gyimesi G, Kanai Y, Hediger MA. Amino acid transporters revisited: New views in health and disease. Trends in Biochemical Sciences. 2018;43(10):752–89.
  56. Souba WW, Pacitti AJ. How amino acids get into cells: mechanisms, models, menus, and mediators. Journal of Parenteral and Enteral Nutrition. 1992;16(6):569–78.
  57. Choudhuri S, Chanderbhan RF. The biology of nutrients: genetic and molecular principles. Elsevier. 2021;273–288.
  58. Wu L, Yan Z, Jiang Y, Chen Y, Du J, Guo L, et al. Metabolic regulation of dendritic cell activation and immune function during inflammation. Frontiers in Immunology. 2023;14:1140749.
  59. Kakazu E, Kondo Y, Kogure T, Ninomiya M, Kimura O, Ueno Y, et al. Plasma amino acids imbalance in cirrhotic patients disturbs the tricarboxylic acid cycle of dendritic cell. Scientific Reports. 2013;3:3459.
  60. Kakazu E, Ueno Y, Kondo Y, Fukushima K, Shiina M, Inoue J, et al. Branched chain amino acids enhance the maturation andfunction of myeloid dendritic cells ex vivo in patients with advanced cirrhosis. Hepatology (Baltimore, Md.). 2009;50(6):1936–45.
  61. Maschalidi S, Mehrotra P, Keçeli BN, De Cleene HKL, Lecomte K, Van der Cruyssen R, et al. Author Correction: Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature. 2022;608(7923):E29.
  62. Borgne ML, Raju S, Zinselmeyer BH, Le VT, Li J, Wang Y, et al. Real-time analysis of calcium signals during the early phase of T cell activation using a genetically-encoded calcium biosensor. Journal of immunology (Baltimore, Md.:1950). 2016;196(4):1471–9.
  63. Chow S, Hedley D. Flow cytometric measurement of intracellular pH. Current Protocols in Cytometry. 2001;9(9.3).
  64. Kim S, Guzman SJ, Hu H, Jonas P. Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons. Nature Neuroscience. 2012;15(4):600–6.
  65. del Cornò M, Scazzocchio B, Masella R, Gessani S. Regulation of Dendritic Cell Function by Dietary Polyphenols. Critical Reviews in Food Science and Nutrition. 2016;56(5):737–47.
  66. Imai K, Minamiya Y, Koyota S, Ito M, Saito H, Sato Y, et al. Inhibition of dendritic cell migration by transforming growth factor-β1 increases tumor-draining lymph node metastasis. Journal of Experimental & Clinical Cancer Research. 2012;31(1):3.
  67. Fekete T, Sütö MI, Bencze D, Mázló A, Szabo A, Biro T, et al. Human Plasmacytoid and Monocyte-Derived Dendritic Cells Display Distinct Metabolic Profile Upon RIG-I Activation. Frontiers in Immunology. 2018;9:3070.
  68. Forderhase AG, Styers HC, Lee CA, Sombers LA. Simultaneous Voltammetric Detection of Glucose and Lactate Fluctuations in Rat Striatum Evoked by Electrical Stimulation of the Midbrain. Analytical and Bioanalytical Chemistry. 2020;412(24):6611–24.
  69. Smith SK, Lugo-Morales LZ, Tang C, Gosrani SP, Lee CA, Roberts JG, et al. Quantitative Comparison of Enzyme Immobilization Strategies for Glucose Biosensing in Real-Time Using Fast-Scan Cyclic Voltammetry Coupled with Carbon-Fiber Microelectrodes. ChemPhys Chem. 2018;19(10):1197–204.
  70. Ahl PJ, Hopkins RA, Xiang WW, Au B, Kaliaperumal N, Fairhurst AM, et al. Met-Flow, a strategy for single-cell metabolic analysis highlights dynamic changes in immune subpopulations. Communications Biology. 2020;3(1):1–15.
  71. Murphy TL, Murphy KM. Dendritic cells in cancer immunology. Cellular & Molecular Immunology. 2022;19(1):3–13.
  72. He Z, Zhu X, Shi Z, Wu T, Wu L. Metabolic Regulation of Dendritic Cell Differentiation. Frontiers in Immunology. 2019;10:27–49.
  73. Manoharan I, Prasad PD, Thangaraju M, Manicassamy S. Lactate-Dependent Regulation of Immune Responses by Dendritic Cells and Macrophages. Frontiers in Immunology. 2021;12:691134.
  74. Lee MKS, Al-Sharea A, Shihata WA, Bertuzzo Veiga C, Cooney OD, Fleetwood AJ, et al. Glycolysis Is Required for LPS-Induced Activation and Adhesion of Human CD14+CD16- Monocytes. Frontiers in Immunology. 2019;10:2054.
  75. Basit F, Mathan T, Sancho D, de Vries IJM. Human Dendritic Cell Subsets Undergo Distinct Metabolic Reprogramming for Immune Response. Frontiers in Immunology. 2018;9:2489.
Published
2023-11-09
Keywords: dendritic cells, metabolism, glycolysis, oxidative phosphorylation, Krebs cycle, fatty acid oxidation
How to Cite
Goncharov, A., & Talankina, A. (2023). Metabolic features of dendritic cell subpopulations. Journal of the Belarusian State University. Ecology, 3. Retrieved from https://journals.bsu.by/index.php/ecology/article/view/5939