The structure of the dose rate from 137Cs, 238Pu, 239+240Pu and 241Am for plants in the Polesye state radiation-ecological reserve

  • Ruslan K. Spirau Institute of Radiobiology of the National Academy of Sciences of Belarus
  • Natallia I. Tsimokhina Institute of Radiobiology of the National Academy of Sciences of Belarus
  • Igor A. Cheshik Institute of Radiobiology of the National Academy of Sciences of Belarus
  • Aleksander N. Nikitin Institute of Microbiology of the National Academy of Sciences of Belarus

Abstract

The values of the RBE-weighted absorbed dose from 137Cs, 238Pu, 239+240Pu and 241Am for the dominant plants in four phytocenoses types situated in the Polesie State Radiation-Ecological Reserve. The assessment of the RBE-weighted absorbed dose rates was carried out by the method of dose coefficients proposed by the International Commission on Radiological Protection, and based on the activity of radionuclides in the aboveground and underground phytomass of plants.  The highest value of RBE-weighted absorbed dose rate in a meadow ecosystem has Poa pratensis (33.11 μGy×h-1), in a mixed birch forest – Festuca ovina (25.19 μGy×h-1), in a pine forest – Betula pendula (36.78 μGy×h-1), in a black alder forest – Corylus avellana (5.39 μGy×h-1). The obtained values of dose rate do not exceed the derived consideration reference levels for non-human biota proposed by the International Commission on Radiological Protection. The main share in the structure of the RBE-weighted absorbed dose rate for plants belongs to the 137Cs – from 64.0% to 99.9%. The main share in the structure of the internal dose rate from transuranic elements belongs to 241Am – from 52.0% to 91.3%. Since the half-lives of the isotopes of transuranic elements exceed the half-life of 137Cs, it is expected that the share of the RBE-weighted absorbed dose rate from the long-lived isotopes of americium and plutonium for the plants in the Polesie State Radiation-Ecological Reserve will increase over years. The results are important for the assessing and forecasting ecology consequences of the chronic exposure the main types of ecosystems to ionizing radiation on the territories contaminated with artificial radioisotopes originated from the Chernobyl accident.

Author Biographies

Ruslan K. Spirau, Institute of Radiobiology of the National Academy of Sciences of Belarus

researcher at the department of environmental and food quality.

Natallia I. Tsimokhina, Institute of Radiobiology of the National Academy of Sciences of Belarus

PhD (biology); head of the department of environmental and food quality.

Igor A. Cheshik, Institute of Radiobiology of the National Academy of Sciences of Belarus

PhD (medicine); director of the Institute of Radiobiology.

Aleksander N. Nikitin, Institute of Microbiology of the National Academy of Sciences of Belarus

PhD (agriculture); deputy director for Science of the Institute of Microbiology.

References

  1. Alexakhin RM. Dozy oblucheniya cheloveka i bioty v sovremennom mire: sostoyaniye i nekotoryye aktual’nyye problemy [Exposure Doses to Humans and Biota in the Modern World: State-of-the-Art and Some Topical Problems]. Meditsinskaya radiologiya i radiatsionnaya bezopasnost’ [Medical radiology and radiation safety]. 2009;54(4):25–31. Russian.
  2. Maistrenko ТА, Belykh ЕS, Trapeznikov AV, Zainullin VG, Vakhrusheva ОМ. Otsenka ekologicheskogo riska radiatsionnogo vozdeystviya dlya prirodnykh ekosistem, zagryaznennykh v rezul’tate avarii na Сhernobylskoy AES [Assessment of ecological risk from radiation exposure for natural ecosystems contaminated due to Chernobyl accident]. Izvestija Komi nauchnogo centra UrO RAN. 2013;3(15):41–47. Russian.
  3. Panchenko SV, Blokhin PA, Kizub PA, Gavrilin EA. Podkhody k otsenke doz vneshnego oblucheniya razlichnykh vidov bioty [Approaches to Estimating the External Irradiation of Various Biota Species]. Radiatsionnaya biologiya. Radioekologiya [Radiation biology. Radioecology]. 2019;59(1):75–81. DOI: 10.1134/S0869803119010077. Russian.
  4. Szufa KM, Mietelski JW, Olech MA. Assessment of internal radiation exposure to Antarctic biota due to selected natural radionuclides in terrestrial and marine environment. Journal of Environmental Radioactivity. 2021;237:106713. DOI: 10.1016/j.jenvrad.2021.106713.
  5. ICRP. A Framework for Assessing the Impact of Ionising Radiation on Non-human Species. ICRP Publication 91. Annals of the ICRP. 2003;33(3):74.
  6. ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Annals of the ICRP. 2007;37(2–4):339.
  7. ICRP. Environmental Protection – the Concept and Use of Reference Animals and Plants. ICRP Publication 108. Annals of the ICRP. 2008;38(4–6):247.
  8. ICRP. Environmental Protection: Transfer Parameters for Reference Animals and Plants. ICRP Publication 114. Annals of the ICRP. 2009;39(6):115.
  9. ICRP. Protection of the Environment under Different Exposure Situations. ICRP Publication 124. Annals of the ICRP. 2014;43(1):62.
  10. ICRP. Dose coefficients for nonhuman biota environmentally exposed to radiation. ICRP Publication 136. Annals of the ICRP. 2017;46(2):139.
  11. ICRP. Radiation weighting for Reference Animals and Plants. ICRP Publication 148. Annals of the ICRP. 2021;50(2):125.
  12. Brown JE, Alfonso B, Avila R, Beresford NA, Copplestone D, Hosseini A. A new version of the ERICA tool to facilitate impact assessments of radioactivity on wild plants and animals. Journal of Environmental Radioactivity. 2016;153:141–148. DOI: 10.1016/j. jenvrad.2015.12.011.
  13. Cujic M, Dragovic S. Assessment of dose rate to terrestrial biota in the area around coal fired power plant applying ERICA tool and RESRAD BIOTA code. Journal of Environmental Radioactivity. 2018;188:108–114. DOI: 10.1016/j.jenvrad.2017.09.014.
  14. Kamboj S. Nonhuman biota dose rate estimation from liquid effluent releases during normal operations of light water reactors using the LADTAP II computer code. Journal of Environmental Radioactivity. 2019;196:141–149. DOI: 10.1016/j.jenvrad.2018.10.018.
  15. Perevolotsky АN, Perevolotskaya ТV, Spiridonov SI. Model’ formirovaniya doz oblucheniya sel’skokhozyaystvennykh rasteniy: osnovnyye podkhody i dopushcheniya [Model of formation of doses of irradiation of agricultural plants: basic approaches and assumptions]. Aktualnye voprosy radiojekologii. 2018;1:33–44. Russian.
  16. Perevolotsky АN, Perevolotskaya ТV, Spiridonov SI. Kontseptual’nyye polozheniya dozimetricheskoy modeli oblucheniya rasteniy biogeotsenozov pri khronicheskikh radioaktivnykh vypadeniyakh [Conceptual provisions of the dosimetric model of irradiation of biogeocenosis plants in chronic radioactive fallout]. Radiatsionnaya biologiya. Radioekologiya [Radiation biology. Radioecology]. 2019;59(1):94–102. DOI: 10.1134/S0869803119010089. Russian.
  17. Konoplja EF, Kudrjashov VP, Mironov VP. Radiatsiya i Chernobyl’: Transuranovyye elementy na territorii Belarusi [Radiation and Chernobyl: Transuranic elements on the territory of Belarus]. Gomel: RNIUP «Institute of Radiology»; 2007. 128 p. Russian.
  18. Bondar YI, Sadchikov VI, Kalinin VN. Perenos 137Cs, 90Sr, 241Am i 238,239+240Pu iz pochvy v zernovyye kul’tury v zone otchuzhdeniya CHAES [The transfer of 137Cs, 90Sr, 241Am and 238,239+240Pu from soil to crops in the Chernobyl exclusion zone]. In: Radiojekologicheskie i radiobiologicheskie posledstvija Chernobyl’skoj katastrofy (g. Khojniki, 2017 oktjabr 11–12). Materialy Mezhdunarodnoj nauchnoprakticheskoj konferencii. Gomel: [publisher unknown]; 2017. p. 10–20. Russian.
  19. Efremova NJu. Otsenka neopredelennosti v izmereniyakh [Ocenka neopredelennosti v izmerenijah]. Minsk: BelGIM; 2003. 50 p. Russian.
  20. Perevolotskaya ТV, Perevolotsky АN, Geraskin SА. Dozy oblucheniya sosnovykh nasazhdeniy v belorusskom sektore 30-kilometrovoy zony vokrug Chernobyl’skoy AES na sovremennom etape [Radiation Doses of Pine Stands in the Belarusian Sector of the 30-Kilometer Zone Around the Chernobyl Nuclear Power Plant at the Present Stage]. Radiatsionnaya biologiya. Radioekologiya [Radiation biology. Radioecology]. 2023;63(3):300–310. DOI: 10.31857/S0869803123030116. Russian.
  21. Geras’kin SA, Dikareva NS, Udalova AA, Vasil’ev DV, Volkova PJu. Posledstviya khronicheskogo oblucheniya sosny obyknovennoy v otdalennyy period posle avarii na Chernobyl’skoy AES [Consequences of chronic irradiation of Scots pine in the longterm period after the Chernobyl accident]. Ecology. 2016;1:30–43. DOI: 10.7868/S0367059716010054. Russian.
  22. Geras’kin SA, Kuzmenkov AG, Vasiliyev DV. Vremennáya dinamika tsitogeneticheskikh effektov v khronicheski obluchayemykh populyatsiyakh sosny obyknovennoy [Time Dynamics of Cytogenetic Effects in Chronically Exposed Scots Pine ]. Radiatsionnaya biologiya. Radioekologiya [Radiation biology. Radioecology]. 2018;58(1):74–84. DOI: 10.7868/S0869803118010083. Russian.
  23. IAEA. Effects of Ionizing Radiation on Plants and Animals at Levels Implied by Current Radiation Protection Standards: Technical Reports Series 332. Vienna: International Atomic Energy Agency. 1992. 184 p.
  24. Maystrenko T, Gruzdev B, Belykh E, Rybak A. The succession of the plant community on a decontaminated radioactive meadow site. Journal of Environmental Radioactivity. 2018;192:687–697. DOI: 10.1016/j.jenvrad.2017.12.013.
Published
2024-01-05
Keywords: dose rate, transuranium elements, non-human biota, caesium, plutonium, americium, radioisotopes
Supporting Agencies This work was supported by grants to perform research work doctoral students, graduate students and applicants of the National Academy of Sciences of Belarus no. 2016-29-140 for 2016 and no. 2017-29-043 for 2017.
How to Cite
Spirau, R., Tsimokhina, N., Cheshik, I., & Nikitin, A. (2024). The structure of the dose rate from 137Cs, 238Pu, 239+240Pu and 241Am for plants in the Polesye state radiation-ecological reserve. Journal of the Belarusian State University. Ecology, 4, 29-40. Retrieved from https://journals.bsu.by/index.php/ecology/article/view/5951
Section
Radioecology and Radiobiology, Radiation Safety